Pregunta
upstudy study bank question image url

15 Sy A dynamite blast at a quarry launches a chunk of rock straight upward, and 2.0 s later it is rising at a speed of \( 15 \mathrm{~m} / \mathrm{s} \). Assuming air resistance has no effect on the rock, calculate its speed: at launch; 5,0 s after launch.

Ask by Garza Deleon. in Italy
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At launch, the rock was moving upward at 34.6 m/s. Five seconds after launch, it was moving downward at 14.4 m/s.

Solución

To solve this problem, we can use the kinematic equations for uniformly accelerated motion. We'll assume upward is the positive direction and take the acceleration due to gravity \( g = 9.8 \, \text{m/s}^2 \) (acting downward). ### 1. **Speed at Launch** Let \( v_0 \) be the initial velocity (speed at launch). The velocity of the rock after time \( t \) is given by: \[ v = v_0 - g t \] We know that \( v = 15 \, \text{m/s} \) at \( t = 2.0 \, \text{s} \). Plugging in the values: \[ 15 \, \text{m/s} = v_0 - (9.8 \, \text{m/s}^2)(2.0 \, \text{s}) \] \[ 15 \, \text{m/s} = v_0 - 19.6 \, \text{m/s} \] \[ v_0 = 15 \, \text{m/s} + 19.6 \, \text{m/s} = 34.6 \, \text{m/s} \] **Initial Speed at Launch:** \( \boxed{34.6 \, \text{m/s} \text{ upward}} \) ### 2. **Speed 5.0 Seconds After Launch** Using the same equation for \( v \) at \( t = 5.0 \, \text{s} \): \[ v = 34.6 \, \text{m/s} - (9.8 \, \text{m/s}^2)(5.0 \, \text{s}) \] \[ v = 34.6 \, \text{m/s} - 49 \, \text{m/s} = -14.4 \, \text{m/s} \] The negative sign indicates the rock is moving **downward** at this time. **Speed at 5.0 Seconds After Launch:** \( \boxed{14.4 \, \text{m/s} \text{ downward}} \) ### **Summary** - **At Launch:** \( 34.6 \, \text{m/s} \) upward - **After 5.0 Seconds:** \( 14.4 \, \text{m/s} \) downward

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the speed of the rock at launch, we can use the fact that the rock is under constant acceleration due to gravity (approximately \( 9.81 \, \text{m/s}^2 \) downward). Given that the speed 2.0 seconds after launch is \( 15 \, \text{m/s} \) upward, we can use the following kinematic equation: \[ v = u + at \] where: - \( v = 15 \, \text{m/s} \) (final speed after 2.0 s), - \( u \) is the initial speed (what we want to find), - \( a = -9.81 \, \text{m/s}^2 \) (negative because it’s acting against the motion), - \( t = 2.0 \, \text{s} \). Rearranging the equation to find \( u \): \[ u = v - at = 15 \, \text{m/s} - (-9.81 \, \text{m/s}^2)(2.0 \, \text{s}) = 15 \, \text{m/s} + 19.62 \, \text{m/s} = 34.62 \, \text{m/s} \] So, the speed at launch (just before the blast) is approximately \( 34.62 \, \text{m/s} \). Now for the speed 5.0 seconds after launch, we will again use the first formula: \[ v = u + at \] Using \( u = 34.62 \, \text{m/s} \): \[ v = 34.62 \, \text{m/s} + (-9.81 \, \text{m/s}^2)(5.0 \, \text{s}) = 34.62 \, \text{m/s} - 49.05 \, \text{m/s} = -14.43 \, \text{m/s} \] The negative sign indicates the rock is now falling downwards. Thus, 5.0 seconds after launch, the speed of the rock is approximately \( 14.43 \, \text{m/s} \) downward.

preguntas relacionadas

I. Constant 12 Incrosing C. Decrosing D, 2 cro as frewiom cicular motion, the dinction of velocity changes because of. 1. Paturintial atocleration 12, Centrijetal force 37. 1A ancleration in uniferm circular motion is directed: A. Tappontial to the cincle is. Ine enverone acting on an object in uniform cincular motion is called: A. Centrifual force B. Cifanifational forme C. Incria D. Gravity 1. Contringsal force 50. The prive of an ofject in uniform circular motion is: B. Giran in tuniform circu plete one revolution A. The time to complete one 40. Inioh of the followine quantiti D. The force acting on the object B. The distance covered in one second ies remains constant in uniform circular motion? S. Volrcie 11. In uniform cir B, simus C. Aevelcration D. Centripetal foriso A. Nanlits of the circle 2. The dircution of centrintal acceleration is: D. Frictional ,he the ecneripetal fonce is proportional to: 1. Towients the enepter of the circle C. Nong the tangent to the circle E. If the radius of a circular puth is hahiod Parallel to the velocity B. Aluay from the center of the ciryle Parallel to the velocity A. llahes 13. Doubles C. Quadruples C. Inverse of the velocity 1). What provides the centrinctal forme for a D. Remains the same moving around a curve? d. Gravio B. Prietion between the tires and the road C. The engine force D. Air resistance A sarellite in circular orbit is hept in motion by: A. Gravizational force B. Magnctic force C. Frictional force D. Centrifugal
Física Ethiopia Jan 24, 2025

Latest Physics Questions

50. What is the relationship between distance and displacement for an object that mover in e eircular path? A) Distance and displacement are always the same. B) Distance is greater than dispiticeaisent C) Distance is less than displacement. D) Distance and displacement are cqual to ctos. 31. A body is dropped from a height. What is its velocity afer 4 seconds? A) \( 4 \mathrm{~m} / \mathrm{s} \) B) \( 9.8 \mathrm{~m} / \mathrm{s} \) C) \( 39.2 \mathrm{~m} / \mathrm{s} \) D) \( 19.6 \mathrm{~m} / \mathrm{s} \) A) 8 meters B) 24 meters C) 48 meters D) 16 meters 32. If a car is moving with constant acceleration, the velocity-lime graph of the car will tas: A) horizontal lina B) A straight line with a positive slope C) A straight line with a ncgative slope D) A curne 33. In a velocity-lime graph, a horizontal line represents: A) Constant speed B) Acceleration C) Uniform motion D) Non-uniform motion 34. Which one of the following pairs of concepts cannot both simultaneously be constant and non tero for a body? A. The specd and velocity B Magnitude of acceleration and acceleration C. Total distance and displacement D. Velocity and occeleration 35. In uniform circular motion, the speed of the object is: A. Constant B. Increasing C. Decreasing D. Zero 36. In uniform circular motion, the direction of velocity changes because of. A. Tangential acceleration B. Cenuripetal force C. Incria D. Gravily 37. The acceleration in uniform circular motion is direcied. A. Tangential to the circle B. Radially outward C. Radially inward D. Ais 43 dyroc angle 38. The net force acting on an object in uniform circular motion is called. A Centrifugal force B Gravitational force \( C \) Cent 39. The period of an object in uniform circulat B. The distance covered in one second A. The time to complete one rev the forie Bacting on the object C. The speed of the object D The femains consiant in uniform circular motion? Which of the following quantitics Acceleration D. Centripetal fort:
Física Ethiopia Jan 24, 2025
I. Constant 12 Incrosing C. Decrosing D, 2 cro as frewiom cicular motion, the dinction of velocity changes because of. 1. Paturintial atocleration 12, Centrijetal force 37. 1A ancleration in uniferm circular motion is directed: A. Tappontial to the cincle is. Ine enverone acting on an object in uniform cincular motion is called: A. Centrifual force B. Cifanifational forme C. Incria D. Gravity 1. Contringsal force 50. The prive of an ofject in uniform circular motion is: B. Giran in tuniform circu plete one revolution A. The time to complete one 40. Inioh of the followine quantiti D. The force acting on the object B. The distance covered in one second ies remains constant in uniform circular motion? S. Volrcie 11. In uniform cir B, simus C. Aevelcration D. Centripetal foriso A. Nanlits of the circle 2. The dircution of centrintal acceleration is: D. Frictional ,he the ecneripetal fonce is proportional to: 1. Towients the enepter of the circle C. Nong the tangent to the circle E. If the radius of a circular puth is hahiod Parallel to the velocity B. Aluay from the center of the ciryle Parallel to the velocity A. llahes 13. Doubles C. Quadruples C. Inverse of the velocity 1). What provides the centrinctal forme for a D. Remains the same moving around a curve? d. Gravio B. Prietion between the tires and the road C. The engine force D. Air resistance A sarellite in circular orbit is hept in motion by: A. Gravizational force B. Magnctic force C. Frictional force D. Centrifugal
Física Ethiopia Jan 24, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad