Pregunta
upstudy study bank question image url

2.2 Conversion to and from percentages - Fractions One of the most important concepts in business is that of percentage. To express one number as a percentage of another is to give its relative value expressed as the numerator of the equivalent fraction in which 100 is the denominator. The symbol for percentage is \( \% \). To convert a fraction to a percentage, multiply the fraction by 100 and write the percentage sign after the answer.

Ask by Bartlett Ramirez. in South Africa
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To convert a fraction to a percentage, divide the numerator by the denominator, multiply by 100, and add the % symbol. For example, \( \frac{3}{4} = 75\% \).

Solución

### 2.2 Conversion to and from Percentages - Fractions One of the most important concepts in business is that of percentage. Percentages allow us to express one number as a part of another, making it easier to compare and understand relative values. The symbol for percentage is **\( \% \)**. #### **Understanding Percentages** To express one number as a percentage of another is to give its relative value expressed as the numerator of the equivalent fraction in which 100 is the denominator. Essentially, a percentage represents a fraction out of 100. **Formula:** \[ \text{Percentage} = \left( \frac{\text{Part}}{\text{Whole}} \right) \times 100\% \] #### **Converting Fractions to Percentages** To convert a fraction to a percentage, follow these steps: 1. **Divide the numerator by the denominator** to get a decimal. 2. **Multiply the decimal by 100**. 3. **Add the percentage sign (%)** to the result. **Formula:** \[ \text{Percentage} = \left( \frac{\text{Numerator}}{\text{Denominator}} \right) \times 100\% \] **Example 1:** Convert the fraction \( \frac{3}{4} \) to a percentage. **Solution:** 1. Divide numerator by denominator: \( \frac{3}{4} = 0.75 \) 2. Multiply by 100: \( 0.75 \times 100 = 75 \) 3. Add the percentage sign: **75%** **Example 2:** Convert the fraction \( \frac{5}{8} \) to a percentage. **Solution:** 1. \( \frac{5}{8} = 0.625 \) 2. \( 0.625 \times 100 = 62.5 \) 3. **62.5%** #### **Converting Percentages to Fractions** To convert a percentage back to a fraction, reverse the process: 1. **Remove the percentage sign (%)**. 2. **Write the number as a fraction with 100 as the denominator**. 3. **Simplify the fraction** if possible. **Example 3:** Convert **45%** to a fraction. **Solution:** 1. Remove the percentage sign: 45 2. Write as a fraction: \( \frac{45}{100} \) 3. Simplify: \( \frac{9}{20} \) **Example 4:** Convert **12.5%** to a fraction. **Solution:** 1. Remove the percentage sign: 12.5 2. Write as a fraction: \( \frac{12.5}{100} \) 3. Simplify: \( \frac{125}{1000} = \frac{1}{8} \) #### **Practice Problems** 1. **Convert the following fractions to percentages:** - \( \frac{2}{5} \) - \( \frac{7}{10} \) - \( \frac{9}{16} \) 2. **Convert the following percentages to fractions and simplify:** - 80% - 33.3% - 2.5% #### **Solutions to Practice Problems** 1. **Fractions to Percentages:** - \( \frac{2}{5} = 0.4 \times 100 = 40\% \) - \( \frac{7}{10} = 0.7 \times 100 = 70\% \) - \( \frac{9}{16} = 0.5625 \times 100 = 56.25\% \) 2. **Percentages to Fractions:** - 80% = \( \frac{80}{100} = \frac{4}{5} \) - 33.3% = \( \frac{33.3}{100} = \frac{333}{1000} \) (simplified as needed) - 2.5% = \( \frac{2.5}{100} = \frac{25}{1000} = \frac{1}{40} \) #### **Key Takeaways** - **Percentage** is a way to express a number as a fraction of 100. - **To convert a fraction to a percentage**, divide the numerator by the denominator, multiply by 100, and add the **\%** symbol. - **To convert a percentage to a fraction**, remove the **\%** symbol, write the number over 100, and simplify the fraction. Understanding how to convert between fractions and percentages is essential in business for interpreting data, calculating discounts, determining profit margins, and more.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that the concept of percentages dates back to ancient Rome? The term “percent” comes from the Latin phrase “per centum,” meaning “by the hundred.” Romans used this idea to collect taxes, making it an essential part of their economy. Today, percentages are vital in various fields, including finance, marketing, and statistics, helping us understand data and trends! In real-world applications, percentages help us make informed decisions daily. For example, when shopping for discounts, knowing how to calculate a percentage off can save you money! If a store offers a 20% discount on a $50 item, simply multiply 50 by 0.20, and voila! You know you'll save $10. This skill is not just useful for shopping—it's crucial for budgeting, investing, and understanding interest rates.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad