Pregunta
upstudy study bank question image url

Student Portal IMain MAT-274 Class Resources A) ALEKS - Jocelyn Chavez - Learn Random Variables and Distributions 15 Joc Normal distribution: Finding a probability, advanced A biology researcher is studying the risk of extinction of a rare tree species in a remote part of the Amazon. In the course of her study, the researcher models the trees' ages using a normal distribution with a mean of 245 years and a standard deviation of 50 years. Use this table or the ALEKS calculator to find the percentage of trees with an age less than 231 years or more than 259 years according to the model. For your intermediate computations, use four or more decimal places. Give your final answer to two decimal places (for example \( 98.23 \% \) ). \( \square \) \%

Ask by Dickson Salinas. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

77.94 %

Solución

To determine the percentage of trees with an age less than 231 years or more than 259 years, we can use the properties of the normal distribution. **Given:** - Mean (\( \mu \)) = 245 years - Standard Deviation (\( \sigma \)) = 50 years **Steps:** 1. **Calculate the Z-scores for 231 and 259 years:** \[ Z_1 = \frac{231 - 245}{50} = \frac{-14}{50} = -0.28 \] \[ Z_2 = \frac{259 - 245}{50} = \frac{14}{50} = 0.28 \] 2. **Find the cumulative probability for each Z-score:** - **For \( Z = -0.28 \):** Using the standard normal distribution table or a calculator: \[ P(Z < -0.28) \approx 0.3897 \] - **For \( Z = 0.28 \):** Since the normal distribution is symmetric: \[ P(Z > 0.28) = P(Z < -0.28) \approx 0.3897 \] 3. **Sum the probabilities for both tails:** \[ \text{Total Percentage} = P(X < 231) + P(X > 259) = 0.3897 + 0.3897 = 0.7794 \] 4. **Convert to percentage:** \[ 0.7794 \times 100 = 77.94\% \] **Final Answer:** **77.94 %**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we first find the z-scores for the ages of 231 years and 259 years using the formula: \[ z = \frac{(X - \mu)}{\sigma} \] Where \( X \) is the value, \( \mu \) is the mean (245 years), and \( \sigma \) is the standard deviation (50 years). For 231 years: \[ z_{231} = \frac{(231 - 245)}{50} = -0.28 \] For 259 years: \[ z_{259} = \frac{(259 - 245)}{50} = 0.28 \] Next, using a standard normal distribution table or calculator, we find the probabilities for these z-scores. The cumulative probability for \( z = -0.28 \) is approximately \( 0.3897 \), and for \( z = 0.28 \) it is approximately \( 0.6103 \). Therefore, the probabilities of trees being less than 231 years or more than 259 years can be calculated as: \[ P(X < 231) = 0.3897 \] \[ P(X > 259) = 1 - 0.6103 = 0.3897 \] Adding these two probabilities gives: \[ P(X < 231 \text{ or } X > 259) = 0.3897 + 0.3897 = 0.7794 \] To convert this to a percentage, multiply by 100 to get approximately **77.94%**. Thus, the final answer rounded to two decimal places is **77.94%**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad