Pregunta
upstudy study bank question image url

Both sets of values have an average of 18 . Is Set A's standard deviation smaller, larger, or about the same as Set B's? Hint: A person can answer this question mostly by looking at the values without performing any substantial calculations. Set A: \( 1 \begin{array}{llllllllll}14 & 16 & 17 & 19 & 20 & 22 & \text { Set B: } 4 & 8 & 10 & 26 \\ 28 & 32\end{array} \)

Ask by Mitchell Garrett. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Set A has a smaller standard deviation than Set B.

Solución

To determine which set has a smaller standard deviation, let's analyze the spread of each set's values relative to their common mean of 18. **Set A: 14, 16, 17, 19, 20, 22** - **Differences from the mean (18):** - 14 → -4 - 16 → -2 - 17 → -1 - 19 → +1 - 20 → +2 - 22 → +4 - **Range of differences:** -4 to +4 **Set B: 4, 8, 10, 26, 28, 32** - **Differences from the mean (18):** - 4 → -14 - 8 → -10 - 10 → -8 - 26 → +8 - 28 → +10 - 32 → +14 - **Range of differences:** -14 to +14 **Analysis:** - **Set A** has values that are **closer** to the mean, with differences ranging from -4 to +4. - **Set B** has values that are **further** from the mean, with differences ranging from -14 to +14. Since standard deviation measures the average distance of each data point from the mean, a smaller spread (as seen in Set A) results in a smaller standard deviation. Conversely, a larger spread (as seen in Set B) results in a larger standard deviation. **Conclusion:** **Set A** has a smaller standard deviation compared to **Set B**. **Answer:** Set A’s values are closer to the mean, so its standard deviation is smaller than Set B’s.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the standard deviation of Set A compared to Set B, let's analyze the spread of values in each set. Set A, having values close to each other ranging from 14 to 22, suggests a smaller dispersion, indicating a potentially smaller standard deviation. In contrast, Set B contains numbers that are more spread out, notably 4 and 32, which significantly increases the variation among the values. Therefore, Set A's standard deviation is likely smaller than Set B's. When comparing standard deviations, it's crucial to consider how closely the values cluster around the average. In this case, Set A's values are tightly packed, leading to less variability, while Set B's wider range—a low of 4 and a high of 32—creates a more significant spread and thus a larger standard deviation. So, we can confidently conclude Set A's standard deviation is smaller than that of Set B!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad