Pregunta
upstudy study bank question image url

Use the given conditions to write an equation for the line in point-slope form and in slope-intercept form. Passing through \( (9,-7) \) and perpendicular to the line whose equation is \( y=\frac{1}{2} x+5 \)

Ask by Coles Horton. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line in **point-slope form** is: \[ y + 7 = -2(x - 9) \] And in **slope-intercept form**: \[ y = -2x + 11 \]

Solución

To find the equation of the line that **passes through the point \( (9, -7) \)** and is **perpendicular** to the line with equation \( y = \frac{1}{2}x + 5 \), follow these steps: ### 1. Determine the Slope of the Given Line The given line is in **slope-intercept form**: \[ y = \frac{1}{2}x + 5 \] Here, the **slope (\(m_1\))** is: \[ m_1 = \frac{1}{2} \] ### 2. Find the Slope of the Perpendicular Line Perpendicular lines have slopes that are **negative reciprocals** of each other. Therefore, the slope (\(m_2\)) of the line perpendicular to the given line is: \[ m_2 = -\frac{1}{m_1} = -\frac{1}{\frac{1}{2}} = -2 \] ### 3. Use the Point-Slope Form The **point-slope form** of a line is: \[ y - y_1 = m(x - x_1) \] Where: - \( (x_1, y_1) \) is a point on the line - \( m \) is the slope Plugging in the point \( (9, -7) \) and the slope \( m_2 = -2 \): \[ y - (-7) = -2(x - 9) \] Simplify: \[ y + 7 = -2(x - 9) \] This is the **point-slope form** of the desired line. ### 4. Convert to Slope-Intercept Form To express the equation in **slope-intercept form** (\( y = mx + b \)), solve for \( y \): \[ y + 7 = -2(x - 9) \] Distribute the slope on the right side: \[ y + 7 = -2x + 18 \] Subtract 7 from both sides to solve for \( y \): \[ y = -2x + 18 - 7 \] \[ y = -2x + 11 \] This is the **slope-intercept form** of the desired line. ### **Final Answers** - **Point-Slope Form:** \[ y + 7 = -2(x - 9) \] - **Slope-Intercept Form:** \[ y = -2x + 11 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The slope of the given line \( y=\frac{1}{2} x+5 \) is \( \frac{1}{2} \). Since we're looking for a line that is perpendicular, the slope of the desired line will be the negative reciprocal, which is \( -2 \). Using the point-slope form, the equation becomes \( y + 7 = -2(x - 9) \). Now, to convert to slope-intercept form, we simplify this to \( y + 7 = -2x + 18 \), leading to \( y = -2x + 11 \). So, the point-slope form is \( y + 7 = -2(x - 9) \) and the slope-intercept form is \( y = -2x + 11 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad