Pregunta
upstudy study bank question image url

The archway of the main entrance of a university is modeled by the quadratic equation \( y=-x^{2}+6 x \). The university is hanging a banner at the main entrance at an angle defined by the equation \( 4 y=21-x \). At what points should the banner be attached to the archway? A. \( (1.5,4.87) \) and \( (3.5,4.37) \) B. \( (1,5,5.62) \) and \( (3.5,6.12) \) C. \( (1,5) \) and \( (5.25,3.94) \) D. \( (1,5.5) \) and \( (5.25,6.56) \)

Ask by Martin Barnett. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The banner should be attached at the points \( (1, 5) \) and \( (5.25, 3.94) \).

Solución

To determine where the banner should be attached to the archway, we need to find the intersection points between the archway and the banner. 1. **Equations Given:** - **Archway:** \( y = -x^2 + 6x \) - **Banner:** \( 4y = 21 - x \) which simplifies to \( y = -\frac{1}{4}x + \frac{21}{4} \) 2. **Find the Intersection Points:** Set the two equations equal to each other to find the \( x \)-coordinates where they intersect. \[ -x^2 + 6x = -\frac{1}{4}x + \frac{21}{4} \] Multiply both sides by 4 to eliminate the fraction: \[ -4x^2 + 24x = -x + 21 \] Bring all terms to one side: \[ -4x^2 + 25x - 21 = 0 \] Multiply by -1 for simplicity: \[ 4x^2 - 25x + 21 = 0 \] Solve for \( x \) using the quadratic formula: \[ x = \frac{25 \pm \sqrt{625 - 336}}{8} = \frac{25 \pm \sqrt{289}}{8} = \frac{25 \pm 17}{8} \] This gives two solutions: \[ x = \frac{42}{8} = 5.25 \quad \text{and} \quad x = \frac{8}{8} = 1 \] 3. **Find the Corresponding \( y \)-Coordinates:** Use the banner's equation \( y = -\frac{1}{4}x + \frac{21}{4} \). - For \( x = 1 \): \[ y = -\frac{1}{4}(1) + \frac{21}{4} = \frac{20}{4} = 5 \] - For \( x = 5.25 \): \[ y = -\frac{1}{4}(5.25) + \frac{21}{4} = -\frac{21}{16} + \frac{84}{16} = \frac{63}{16} \approx 3.94 \] 4. **Intersection Points:** The banner should be attached at \( (1, 5) \) and \( (5.25, 3.94) \). **Answer:** C. \( (1,5) \) and \( (5.25,3.94) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the points where the banner should be attached to the archway, we must solve the system of equations represented by the quadratic equation \( y = -x^2 + 6x \) and the linear equation \( y = \frac{21 - x}{4} \). First, let's substitute the expression for \( y \) from the linear equation into the quadratic equation: \[ \frac{21 - x}{4} = -x^2 + 6x \] Multiplying both sides by 4 to eliminate the fraction gives: \[ 21 - x = -4x^2 + 24x \] Rearranging this results in the quadratic form: \[ 4x^2 - 25x + 21 = 0 \] Now, we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) with \( a = 4, b = -25, c = 21 \). Calculating the discriminant: \[ b^2 - 4ac = (-25)^2 - 4 * 4 * 21 = 625 - 336 = 289 \] Now substituting into the quadratic formula: \[ x = \frac{25 \pm \sqrt{289}}{8} = \frac{25 \pm 17}{8} \] Calculating the two possible \( x \) values: 1. \( x = \frac{42}{8} = 5.25 \) 2. \( x = \frac{8}{8} = 1 \) Next, we find the corresponding \( y \)-values. Substituting \( x = 1 \) into the quadratic equation: \[ y = -1^2 + 6 * 1 = 5 \] For \( x = 5.25 \): \[ y = -5.25^2 + 6 * 5.25 = -27.5625 + 31.5 = 3.9375 \approx 3.94 \] Thus, the points where the banner should be attached to the archway are approximately \( (1, 5) \) and \( (5.25, 3.94) \). And this leads us to option C: \( (1,5) \) and \( (5.25,3.94) \). In order to prevent common mistakes while solving such equations, always ensure you clearly define one variable in terms of the other and watch out for algebraic errors, especially in simplification. If you want to dive deeper into quadratic equations and their applications, think about exploring topics like projectile motion in physics since it often models such parabolas beautifully. Understanding how these concepts can manifest in real-life scenarios adds an enriching layer to learning mathematics!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad