Write the domain in interval notation. \( \begin{array}{l}\text { (a) } k(x)=\frac{x+7}{x-6} \\ \text { (b) } j(x)=\frac{x+7}{x^{2}+6} \\ \text { (c) } p(x)=\frac{x+7}{x^{2}-6}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
For the function \( k(x) = \frac{x+7}{x-6} \), the denominator cannot equal zero, so we find that \( x - 6 \neq 0 \) or \( x \neq 6 \). Therefore, the domain in interval notation is \( (-\infty, 6) \cup (6, \infty) \). For \( j(x) = \frac{x+7}{x^{2}+6} \), since \( x^{2} + 6 > 0 \) for all real numbers (it has no real roots), this means the function is defined for all \( x \). The domain in interval notation is \( (-\infty, \infty) \). For \( p(x) = \frac{x+7}{x^{2}-6} \), we need to ensure that the denominator isn't zero. Setting \( x^{2} - 6 = 0 \) gives us \( x = \pm \sqrt{6} \). Hence, the domain in interval notation is \( (-\infty, -\sqrt{6}) \cup (-\sqrt{6}, \sqrt{6}) \cup (\sqrt{6}, \infty) \).