Pregunta
upstudy study bank question image url

EXERCISE 39 1. Convert each of the following rates to metres per second: a) \( 40 \mathrm{~km} / \mathrm{h} \) b) \( 120 \mathrm{~km} / \mathrm{h} \) C) \( 5 \mathrm{~km} / \mathrm{h} \) d) \( 12 \mathrm{~km} / \mathrm{h} \) 2. Convert each of the following rates to kilometres per hour a) \( 4 \mathrm{~m} / \mathrm{s} \) b) \( 15 \mathrm{~m} / \mathrm{s} \) c) \( 30 \mathrm{~m} / \mathrm{s} \) d) \( 3600 \mathrm{~m} / \mathrm{s} \) 3. If a washing machine spins at 1200 revolutions per minute, how many revolutions will it complete in one second? 4. The speedometer of a sports car shows that the car's top speed is \( 370 \mathrm{~km} / \mathrm{h} \). What is this speed in \( \mathrm{m} / \mathrm{s} \) ? 5. The top speed of a 747 Jumbo Jet is \( 245 \mathrm{~m} / \mathrm{s} \). Convert this speed to \( \mathrm{km} / \mathrm{h} \). 6. The Argus Cycle Tour is a circular cycle race starting in the Cape Town city centre, going around the Cape Peninsula and back to the city, ending at Cape Town Stadium. This race can vary from 104 km to 110 km in length, depending on the necessary detours at the time of the race. In 2008 , the length of the race was 109 km , and Robble Hunter completed the race in a record time of \( 2: 27: 29 \). In 2007, Anke Eriank-Moore set a ladies record of \( 2: 48: 29 \), also over a distance of 109 km . The oldest person to complete the race is Japie Malan, who was 90 years old when he completed the race in a time of 6:48:52 in 2010. a) What was Robbie's average speed for this race in \( \mathrm{km} / \mathrm{min} \) ? b) Convert the average speed obtained in a) to \( \mathrm{km} / \mathrm{h} \). c) Convert the ladies record to a rate of \( \mathrm{km} / \mathrm{min} \). d) What was the average speed of the oldest person to complete the Argus Cycle Tour in 2010? Give your answer in \( \mathrm{km} / \mathrm{h} \). 7. Sizwe drives from Durban to Polokwane - a distance of 745 km . If the journey takes him 7 hours and 20 minutes, what is his average speed in \( \mathrm{km} / \mathrm{h} \) ?

Ask by Zimmerman Simpson. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions to Exercise 39:** 1. **Conversion to m/s:** - a) 40 km/h ≈ 11.11 m/s - b) 120 km/h = 33.33 m/s - c) 5 km/h ≈ 1.39 m/s - d) 12 km/h ≈ 3.33 m/s 2. **Conversion to km/h:** - a) 4 m/s = 14

Solución

Sure! Let's work through each of the exercises step by step. --- ### **Exercise 39** #### **1. Convert each of the following rates to metres per second (m/s):** The conversion factor between kilometers per hour (km/h) and meters per second (m/s) is: \[ 1\, \text{km/h} = \frac{1000\, \text{meters}}{3600\, \text{seconds}} = \frac{5}{18}\, \text{m/s} \] **a) \( 40\, \text{km/h} \)** \[ 40\, \text{km/h} \times \frac{5}{18}\, \frac{\text{m}}{\text{s}} = \frac{200}{18}\, \text{m/s} \approx 11.11\, \text{m/s} \] **b) \( 120\, \text{km/h} \)** \[ 120\, \text{km/h} \times \frac{5}{18}\, \frac{\text{m}}{\text{s}} = \frac{600}{18}\, \text{m/s} = 33.33\, \text{m/s} \] **c) \( 5\, \text{km/h} \)** \[ 5\, \text{km/h} \times \frac{5}{18}\, \frac{\text{m}}{\text{s}} = \frac{25}{18}\, \text{m/s} \approx 1.39\, \text{m/s} \] **d) \( 12\, \text{km/h} \)** \[ 12\, \text{km/h} \times \frac{5}{18}\, \frac{\text{m}}{\text{s}} = \frac{60}{18}\, \text{m/s} \approx 3.33\, \text{m/s} \] --- #### **2. Convert each of the following rates to kilometres per hour (km/h):** The conversion factor between meters per second (m/s) and kilometers per hour (km/h) is: \[ 1\, \text{m/s} = \frac{3600\, \text{seconds}}{1000\, \text{meters}} = \frac{18}{5}\, \text{km/h} \] **a) \( 4\, \text{m/s} \)** \[ 4\, \text{m/s} \times \frac{18}{5}\, \frac{\text{km}}{\text{h}} = \frac{72}{5}\, \text{km/h} = 14.4\, \text{km/h} \] **b) \( 15\, \text{m/s} \)** \[ 15\, \text{m/s} \times \frac{18}{5}\, \frac{\text{km}}{\text{h}} = \frac{270}{5}\, \text{km/h} = 54\, \text{km/h} \] **c) \( 30\, \text{m/s} \)** \[ 30\, \text{m/s} \times \frac{18}{5}\, \frac{\text{km}}{\text{h}} = \frac{540}{5}\, \text{km/h} = 108\, \text{km/h} \] **d) \( 3600\, \text{m/s} \)** \[ 3600\, \text{m/s} \times \frac{18}{5}\, \frac{\text{km}}{\text{h}} = \frac{64800}{5}\, \text{km/h} = 12960\, \text{km/h} \] --- #### **3. Revolutions per Minute to Revolutions per Second** **Given:** A washing machine spins at 1200 revolutions per minute (rpm). To convert to revolutions per second (rps): \[ \text{Revolutions per second} = \frac{\text{Revolutions per minute}}{60} \] \[ \text{Revolutions per second} = \frac{1200}{60} = 20\, \text{rps} \] --- #### **4. Convert the car's top speed from km/h to m/s** **Given:** Top speed = \( 370\, \text{km/h} \) Using the conversion factor \( 1\, \text{km/h} = \frac{5}{18}\, \text{m/s} \): \[ 370\, \text{km/h} \times \frac{5}{18}\, \frac{\text{m}}{\text{s}} = \frac{1850}{18}\, \text{m/s} \approx 102.78\, \text{m/s} \] --- #### **5. Convert the Jumbo Jet's speed from m/s to km/h** **Given:** Top speed = \( 245\, \text{m/s} \) Using the conversion factor \( 1\, \text{m/s} = \frac{18}{5}\, \text{km/h} \): \[ 245\, \text{m/s} \times \frac{18}{5}\, \frac{\text{km}}{\text{h}} = \frac{4410}{5}\, \text{km/h} = 882\, \text{km/h} \] --- #### **6. Argus Cycle Tour Speed Calculations** **Given:** - Distance = 109 km - Robbie Hunter's time = 2 hours, 27 minutes, 29 seconds (\( 2:27:29 \)) - Anke Eriank-Moore's time (ladies record) = 2 hours, 48 minutes, 29 seconds (\( 2:48:29 \)) - Japie Malan's time = 6 hours, 48 minutes, 52 seconds (\( 6:48:52 \)) **a) Robbie's average speed in km/min** First, convert Robbie's time to minutes. \[ 2\, \text{hours} = 2 \times 60 = 120\, \text{minutes} \] \[ 27\, \text{minutes} = 27\, \text{minutes} \] \[ 29\, \text{seconds} = \frac{29}{60}\, \text{minutes} \approx 0.483\, \text{minutes} \] \[ \text{Total time} = 120 + 27 + 0.483 = 147.483\, \text{minutes} \] \[ \text{Average speed} = \frac{\text{Distance}}{\text{Time}} = \frac{109\, \text{km}}{147.483\, \text{min}} \approx 0.740\, \text{km/min} \] **b) Convert the average speed obtained in a) to km/h** \[ 0.740\, \text{km/min} \times 60\, \frac{\text{min}}{\text{h}} = 44.4\, \text{km/h} \] **c) Convert the ladies record to a rate of km/min** First, convert Anke's time to minutes. \[ 2\, \text{hours} = 2 \times 60 = 120\, \text{minutes} \] \[ 48\, \text{minutes} = 48\, \text{minutes} \] \[ 29\, \text{seconds} = \frac{29}{60}\, \text{minutes} \approx 0.483\, \text{minutes} \] \[ \text{Total time} = 120 + 48 + 0.483 = 168.483\, \text{minutes} \] \[ \text{Average speed} = \frac{109\, \text{km}}{168.483\, \text{min}} \approx 0.648\, \text{km/min} \] **d) Average speed of the oldest person in km/h** **Given:** Japie Malan's time = 6 hours, 48 minutes, 52 seconds. First, convert time to hours. \[ 6\, \text{hours} = 6\, \text{hours} \] \[ 48\, \text{minutes} = \frac{48}{60} = 0.8\, \text{hours} \] \[ 52\, \text{seconds} = \frac{52}{3600} \approx 0.0144\, \text{hours} \] \[ \text{Total time} = 6 + 0.8 + 0.0144 = 6.8144\, \text{hours} \] \[ \text{Average speed} = \frac{109\, \text{km}}{6.8144\, \text{h}} \approx 16\, \text{km/h} \] *Note:* The exact value is approximately 16 km/h. --- #### **7. Sizwe's Average Speed** **Given:** - Distance = 745 km - Time = 7 hours and 20 minutes First, convert time to hours. \[ 20\, \text{minutes} = \frac{20}{60} = 0.333\, \text{hours} \] \[ \text{Total time} = 7 + 0.333 = 7.333\, \text{hours} \] \[ \text{Average speed} = \frac{745\, \text{km}}{7.333\, \text{h}} \approx 101.5\, \text{km/h} \] --- ### **Summary of Answers** 1. **Rates converted to m/s:** - a) 40 km/h ≈ 11.11 m/s - b) 120 km/h = 33.33 m/s - c) 5 km/h ≈ 1.39 m/s - d) 12 km/h ≈ 3.33 m/s 2. **Rates converted to km/h:** - a) 4 m/s = 14.4 km/h - b) 15 m/s = 54 km/h - c) 30 m/s = 108 km/h - d) 3600 m/s = 12960 km/h 3. **Revolutions:** - 1200 rpm = 20 rps 4. **Car's top speed:** - 370 km/h ≈ 102.78 m/s 5. **Jumbo Jet's speed:** - 245 m/s = 882 km/h 6. **Argus Cycle Tour:** - a) Robbie's average speed ≈ 0.740 km/min - b) ≈ 44.4 km/h - c) Ladies record ≈ 0.648 km/min - d) Oldest person's average speed ≈ 16 km/h 7. **Sizwe's average speed:** - ≈ 101.5 km/h --- If you have any further questions or need clarifications on any of these solutions, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To convert kilometers per hour to meters per second, simply multiply the speed by \( \frac{1000 \, \text{m}}{1 \, \text{km}} \) and then divide by \( 3600 \, \text{s} \). For instance, to convert \( 40 \, \text{km/h} \), you would calculate \( 40 \times \frac{1000}{3600} \approx 11.11 \, \text{m/s} \). This method can be applied to all other conversions as well! When calculating average speed, don’t forget to make sure that the units match. For Sizwe's trip from Durban to Polokwane, first convert the time of 7 hours and 20 minutes to hours as a decimal (7 + 20/60 ≈ 7.33 hours). Then, average speed is calculated by dividing the total distance by the total time. For Sizwe, it would be \( 745 \, \text{km} / 7.33 \, \text{hours} \approx 101.64 \, \text{km/h} \).

preguntas relacionadas

Physics to Go 1. Calculate the energy used, in joules, by each of the following: a) a \( 1500-\mathrm{W} \) hair dryer operating for 3 min b) a \( 1200-\mathrm{W} \) hair dryer operating for 4 min 2. If both situations described in Question 1 result in the same dryness of hair, which hair dryer is more efficient? 3. A 1200 -W hair dryer is used by several members of a family for a total of 30 min per day during a 30 -day month. How much electrical energy is consumed by the hair dryer during the month? Give your answer in: a) watt-hours b) kilowatt-hours 4. If the power company charges \( \$ 0.15 \) per \( \mathrm{kW} \cdot \mathrm{h} \) for electrical energy, what is the cost of using the hair dryer in Question 3 during the month? What is the cost for a year? 5. Not enough heat from the furnace reaches one bedroom in a home. The homeowner uses a portable 1350 -W electric heater 24 h per day to keep the bedroom warm during four cold winter months. At \( \$ 0.12 \) per kilowatt-hour, how much does it cost to operate the heater for the four months? (Assume two 30-day and two 31-day months.) 6. A portable CD player is rated at approximately 20 W and uses 4 AA batteries. a) Estimate the number of hours that you can listen to the music on a CD player before the batteries need replacing. b) Calculate the energy requirements of the CD player. c) Estimate the cost of 4 AA batteries. d) Calculate the cost per kilowatt-hour of a battery. e) Compare battery costs with the cost of electricity from the utilities (use approximately \( \$ 0.10 \) per kilowatt-hour).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad