Given the function \( f(x)=4 x+4 \). (1) Determine the equation of \( f^{-1} \). (2) Sketch the graphs of \( f \) and \( f^{-1} \) on the same set of axes and show the line of symmetry. (3) Calculate the coordinates of the point of intersection between \( f \) and \( f^{-1} \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve this problem, we will tackle each part step-by-step. ### (1) Determine the equation of \( f^{-1} \). To find the inverse of the function \( f(x) = 4x + 4 \), we first set \( y = f(x) \): \[ y = 4x + 4 \] Now, we solve for \( x \) in terms of \( y \): \[ y - 4 = 4x \] \[ x = \frac{y - 4}{4} \] Now we express \( f^{-1}(y) \): \[ f^{-1}(y) = \frac{y - 4}{4} \] To write it in terms of \( x \): \[ f^{-1}(x) = \frac{x - 4}{4} \] ### (2) Sketch the graphs of \( f \) and \( f^{-1} \) on the same set of axes and show the line of symmetry. To sketch these functions, let's find some points: For \( f(x) = 4x + 4 \): - If \( x = 0 \), \( f(0) = 4 \). - If \( x = 1 \), \( f(1) = 8 \). - If \( x = -1 \), \( f(-1) = 0 \). For \( f^{-1}(x) = \frac{x - 4}{4} \): - If \( x = 4 \), \( f^{-1}(4) = 0 \). - If \( x = 8 \), \( f^{-1}(8) = 1 \). - If \( x = 0 \), \( f^{-1}(0) = -1 \). Now, sketching both functions: 1. **\( f(x) \)** is a straight line with a positive slope (4) that crosses the y-axis at (0, 4). 2. **\( f^{-1}(x) \)** is also a straight line with a slope of \( \frac{1}{4} \) that crosses the x-axis at (4, 0). The line of symmetry between the two graphs is the line \( y = x \), as this represents points where \( f(x) \) equals \( f^{-1}(x) \). ### (3) Calculate the coordinates of the point of intersection between \( f \) and \( f^{-1} \). To find the point where \( f(x) = f^{-1}(x) \): \[ 4x + 4 = \frac{x - 4}{4} \] Multiply through by 4 to eliminate the fraction: \[ 16x + 16 = x - 4 \] Now, simplify and solve for \( x \): \[ 16x - x = -4 - 16 \] \[ 15x = -20 \] \[ x = -\frac{20}{15} = -\frac{4}{3} \] Now, we substitute \( x \) back into either function to find \( y \): \[ f\left(-\frac{4}{3}\right) = 4\left(-\frac{4}{3}\right) + 4 = -\frac{16}{3} + \frac{12}{3} = -\frac{4}{3} \] Thus, the coordinates of the point of intersection are: \[ \left(-\frac{4}{3}, -\frac{4}{3}\right) \] And that’s how you find the inverse function, sketch it alongside its original, and identify their intersection point! Happy math adventuring!