Pregunta
upstudy study bank question image url

5. The population of a town is 15,000 . It decreases at a rate of \( 11 \% \) per year. In about how many years will the population drop below 9,000 ? \( \begin{array}{ll}\text { a) } 5 & \text { b) } 6 \\ \text { c) } 3 & \text { d) } 4\end{array} \)

Ask by Delgado Burton. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It will take 5 years for the population to drop below 9,000. **Answer:** a) 5

Solución

To determine how many years it will take for the population to drop below 9,000, we can use the formula for exponential decay: \[ P(t) = P_0 \times (1 - r)^t \] Where: - \( P(t) \) is the population at time \( t \). - \( P_0 \) is the initial population (15,000). - \( r \) is the rate of decrease (11%, or 0.11). - \( t \) is the number of years. Plugging in the values: \[ 9000 = 15000 \times (0.89)^t \] First, divide both sides by 15,000: \[ 0.6 = (0.89)^t \] To solve for \( t \), take the natural logarithm of both sides: \[ \ln(0.6) = t \times \ln(0.89) \] \[ t = \frac{\ln(0.6)}{\ln(0.89)} \approx \frac{-0.5108}{-0.1165} \approx 4.38 \text{ years} \] Since \( t \) must be a whole number of years, it will take **5 years** for the population to drop below 9,000. **Answer:** a) 5

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine when the population drops below 9,000, we can use the exponential decay formula: \( P(t) = P_0 \cdot (1 - r)^t \) where: - \( P_0 \) is the initial population (15,000), - \( r \) is the rate of decrease (11% or 0.11), - \( t \) is the number of years, - \( P(t) \) is the population after \( t \) years. We set the equation to find when \( P(t) < 9,000 \): \[ 15,000 \cdot (1 - 0.11)^t < 9,000 \] Solving this gives: \[ (0.89)^t < \frac{9,000}{15,000} \] \[ (0.89)^t < 0.6 \] Taking the logarithm of both sides: \[ t \cdot \log(0.89) < \log(0.6) \] This results in: \[ t > \frac{\log(0.6)}{\log(0.89)} \approx 3.67 \] So, it will take approximately 4 years for the population to drop below 9,000. Therefore, the answer is **d) 4**. Now to dive into some additional fun facts: The decline of a population can often result in a variety of social and economic changes, like a reduction in local business or the revitalization of the area as it might become attractive for new residents. In many towns facing population decline, community involvement often spikes as citizens work towards revitalization and new development. Curiously, the concept of exponential decay isn't limited to populations! You can find it everywhere—from radioactive decay to how quickly your leftovers might go bad in the fridge. So, the next time you watch a movie about time travel, you might just think about how fast or slow things decay in terms of population and beyond!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad