Pregunta
upstudy study bank question image url

What are the solutions to the equation \( x^{2}-11 x+24=0 \) ? a.) \( x=-3 \) and \( x=8 \) b.) \( x=-3 \) and \( x=-8 \) c.) \( x=3 \) and \( x=8 \) d.) \( x=3 \) and \( x=-8 \)

Ask by Page Pena. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = 3 \) and \( x = 8 \).

Solución

To solve the quadratic equation \( x^{2} - 11x + 24 = 0 \), we can use the factorization method or the quadratic formula. Let's use factoring in this case. **Step 1: Factor the quadratic equation.** We're looking for two numbers that multiply to **24** (the constant term) and add up to **-11** (the coefficient of \( x \)). The numbers **-3** and **-8** satisfy these conditions because: - \( (-3) \times (-8) = 24 \) - \( (-3) + (-8) = -11 \) **Step 2: Write the equation in its factored form.** \[ x^{2} - 11x + 24 = (x - 3)(x - 8) = 0 \] **Step 3: Solve for \( x \).** Set each factor equal to zero: 1. \( x - 3 = 0 \) ⟹ \( x = 3 \) 2. \( x - 8 = 0 \) ⟹ \( x = 8 \) **Conclusion:** The solutions to the equation are \( x = 3 \) and \( x = 8 \). **Correct Answer:** **c.) \( x=3 \) and \( x=8 \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( x^{2} - 11x + 24 = 0 \), we can factor it. We are looking for two numbers that multiply to 24 and add up to -11. The numbers -3 and -8 fit this, so we can write the equation as \( (x - 3)(x - 8) = 0 \). This gives us the solutions \( x = 3 \) and \( x = 8 \). Hence, the correct answer is c.) \( x=3 \) and \( x=8 \). While solving quadratic equations can seem a bit daunting, factoring is a reliable method when the coefficients are manageable. If factoring feels tricky, don't hesitate to use the quadratic formula: \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). In this case, plugging in values \( a = 1 \), \( b = -11 \), and \( c = 24 \) will lead you to the same solutions! Happy solving! When you encounter a quadratic equation, remember that checking the solutions can help catch mistakes. After finding \( x = 3 \) and \( x = 8 \), substitute them back into the original equation. If both satisfy the equation, you’re golden! Common mistakes include incorrectly simplifying or overlooking the signs in the factoring process. Keep an eye on those little details!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad