8. \( \frac{2 a+1}{a}+\frac{a+4}{4} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( \frac{2a+1}{a} + \frac{a+4}{4} \), we start by finding a common denominator. The common denominator between \( a \) and \( 4 \) is \( 4a \). Rewriting each fraction: 1. For \( \frac{2a+1}{a} \), we multiply the numerator and denominator by \( 4 \): \[ \frac{2a+1}{a} = \frac{4(2a+1)}{4a} = \frac{8a + 4}{4a}. \] 2. For \( \frac{a+4}{4} \), we multiply the numerator and denominator by \( a \): \[ \frac{a+4}{4} = \frac{a(a+4)}{4a} = \frac{a^2 + 4a}{4a}. \] Now we can combine the two fractions: \[ \frac{8a + 4}{4a} + \frac{a^2 + 4a}{4a} = \frac{(8a + 4) + (a^2 + 4a)}{4a} = \frac{a^2 + 12a + 4}{4a}. \] This results in: \[ \frac{a^2 + 12a + 4}{4a}. \] Thus, the simplified form of the expression is \( \frac{a^2 + 12a + 4}{4a} \).