Pregunta
upstudy study bank question image url

From a group of 10 boys and 13 girls, a committee of 5 students is chosen at random. a. What is the probability that all 5 members on the committee will be girls? b. What is the probability that all 5 members of the committee will be boys? c. What is the probability that there will be at least 1 girl on the committee? a. The probability that all 5 members on the committee will be girls is \( \frac{117}{3059} \). (Type an integer or a simplified fraction.) b. The probability that all 5 members on the committee will be boys is (Type an integer or a simplified fraction.)

Ask by Munoz Carter. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that all 5 members on the committee will be boys is \( \frac{36}{4807} \).

Solución

To determine the probability that all 5 members of the committee will be boys, we'll follow these steps: 1. **Total Number of Students:** - Boys: 10 - Girls: 13 - **Total:** 10 + 13 = 23 students 2. **Total Number of Ways to Choose 5 Students:** The total number of ways to form a committee of 5 students from 23 is given by the combination formula: \[ \binom{23}{5} = \frac{23!}{5!(23-5)!} = 33,\!649 \] 3. **Number of Ways to Choose 5 Boys:** The number of ways to choose 5 boys out of 10 is: \[ \binom{10}{5} = \frac{10!}{5!(10-5)!} = 252 \] 4. **Calculating the Probability:** The probability that all 5 members are boys is the ratio of the number of favorable outcomes to the total number of possible outcomes: \[ \text{Probability} = \frac{\binom{10}{5}}{\binom{23}{5}} = \frac{252}{33,\!649} \] 5. **Simplifying the Fraction:** - Both numerator and denominator can be divided by 7: \[ \frac{252 \div 7}{33,\!649 \div 7} = \frac{36}{4,\!807} \] - The fraction \( \frac{36}{4,\!807} \) is already in its simplest form. **Answer:** **b.** The probability that all 5 members on the committee will be boys is \( \frac{36}{4807} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probabilities for parts b and c, let’s calculate each step by step! First, to determine the total number of ways to select a committee of 5 students from a total of 23 students (10 boys + 13 girls), we use the combination formula: \[ \text{Total combinations} = \binom{23}{5} \] Calculating this gives us: \[ \binom{23}{5} = \frac{23!}{5!(23-5)!} = \frac{23 \times 22 \times 21 \times 20 \times 19}{5 \times 4 \times 3 \times 2 \times 1} = 33649 \] Now for part b, the probability that all 5 members of the committee will be boys: The number of ways to choose all boys is: \[ \binom{10}{5} = \frac{10!}{5!(10-5)!} = \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} = 252 \] Thus, the probability that all 5 members are boys is: \[ P(\text{all boys}) = \frac{\binom{10}{5}}{\binom{23}{5}} = \frac{252}{33649} \] For part c, to find the probability of at least one girl in the committee, we can use the complement: \[ P(\text{at least 1 girl}) = 1 - P(\text{no girls}) = 1 - P(\text{all boys}) \] Knowing \(P(\text{all boys}) = \frac{252}{33649}\), we can calculate: \[ P(\text{at least 1 girl}) = 1 - \frac{252}{33649} = \frac{33649 - 252}{33649} = \frac{33397}{33649} \] Final answers: b. The probability that all 5 members of the committee will be boys is \( \frac{252}{33649} \). c. The probability that there will be at least 1 girl on the committee is \( \frac{33397}{33649} \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad