Pregunta
upstudy study bank question image url

If a triangle has sides measuring 60 in., 75 in., and 45 in . in length, is it right triangle? "Hint: Use the converse of the Pythagorean Theorem to check. Don't forget to use your Desmos calculator and STAAR Reference Sheet to hel, (1 point) No, because 9,225 does not equal 2,025 . Yes, because 3,600 equals 3,600 No, because 5,625 does not equal 3,600 . Yes, because 5,625 equals 5,625

Ask by Maxwell May. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The triangle is a right triangle because \(60^2 + 45^2 = 75^2\), which means \(3600 + 2025 = 5625\).

Solución

To determine if the triangle with sides 60 in., 75 in., and 45 in. is a right triangle, we can use the **Converse of the Pythagorean Theorem**. This theorem states that if \(a^2 + b^2 = c^2\), where \(c\) is the longest side, then the triangle is a right triangle. Let's identify the longest side: - **Longest side (hypotenuse)**: 75 in. Now, apply the theorem: \[ 60^2 + 45^2 = 3600 + 2025 = 5625 \] \[ 75^2 = 5625 \] Since \(3600 + 2025 = 5625\), the equation holds true. **Correct Answer:** **Yes, because 5,625 equals 5,625**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine if the triangle with sides measuring 60 in., 75 in., and 45 in. is a right triangle, you can use the converse of the Pythagorean Theorem. So, square the lengths of the longest side (75 in.) and compare it to the sum of the squares of the other two sides. You’ll calculate: \( 75^2 = 5,625 \) and \( 60^2 + 45^2 = 3,600 + 2,025 = 5,625 \). Since both sides equal, this triangle is indeed a right triangle! When working with the Pythagorean theorem, one common mistake is misidentifying the longest side, thinking it’s enough just to use any two sides. Always remember that the Pythagorean theorem applies specifically to right triangles where the longest side (hypotenuse) is opposite the right angle. So, ensure you square the longest side and compare it correctly for a proper conclusion!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad