\begin{tabular}{l} A right rectangular prism is 3 in by 4.25 in by 18.25 in. What is the total surface area of the prism? \\ \( 145.0625 \mathrm{in}^{2} \) \\ \( 180.625 \mathrm{in}^{2} \) \\ \( 264.625 \mathrm{in}^{2} \) \\ \( 290.125 \mathrm{in}^{2} \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the total surface area of a right rectangular prism, you can use the formula: \[ \text{Surface Area} = 2(lw + lh + wh) \] Here, \( l \) is length (3 in), \( w \) is width (4.25 in), and \( h \) is height (18.25 in). Plugging in these values, we get: \[ \text{Surface Area} = 2(3 \times 4.25 + 3 \times 18.25 + 4.25 \times 18.25). \] Calculating each term separately: - \( lw = 3 \times 4.25 = 12.75 \) - \( lh = 3 \times 18.25 = 54.75 \) - \( wh = 4.25 \times 18.25 = 77.5625 \) Now sum these up: \[ 12.75 + 54.75 + 77.5625 = 145.0625 \] Multiply by 2: \[ \text{Surface Area} = 2 \times 145.0625 = 290.125 \mathrm{in}^2. \] So, the total surface area of the prism is \( 290.125 \mathrm{in}^2 \).