Pregunta
upstudy study bank question image url

1. (a) Find conjugate and magnitude of \( z=\frac{(3+2 i)(1-2 i)}{4+3 i} \) (To be solved in elass) (b) If \( = \) is a complex number then \( |z| \geq 0 \) and \( |z|=0 \) iff \( z=0 \) (To be solved in class) \( z=3(1-2 i)+2 i(1-2 i) \)

Ask by Christensen Johnson. in Pakistan
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) The conjugate of \( z \) is \( \frac{16}{25} + \frac{37}{25}i \) and the magnitude of \( z \) is \( \frac{\sqrt{65}}{5} \). (b) If \( z \) is a complex number, then \( |z| \geq 0 \) and \( |z| = 0 \) if and only if \( z = 0 \).

Solución

(a) To find the conjugate and magnitude of the complex number \( z=\frac{(3+2i)(1-2i)}{4+3i} \), we first need to simplify the expression. Given: \[ z=\frac{(3+2i)(1-2i)}{4+3i} \] To simplify the expression, we can multiply the numerator and denominator by the conjugate of the denominator to eliminate the complex number in the denominator. The conjugate of \( 4+3i \) is \( 4-3i \). Multiplying the numerator and denominator by \( 4-3i \), we get: \[ z=\frac{(3+2i)(1-2i)(4-3i)}{(4+3i)(4-3i)} \] Now, we can simplify the expression further: \[ z=\frac{(3+2i)(1-2i)(4-3i)}{4^2-(3i)^2} \] \[ z=\frac{(3+2i)(1-2i)(4-3i)}{16+9} \] \[ z=\frac{(3+2i)(1-2i)(4-3i)}{25} \] Now, we can find the conjugate and magnitude of \( z \). The conjugate of \( z \) is \( \overline{z} \), which is obtained by changing the sign of the imaginary part. The magnitude of \( z \) is \( |z| \), which is the square root of the sum of the squares of the real and imaginary parts. Let's calculate the conjugate and magnitude of \( z \) using the simplified expression. Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\left(3+2i\right)\left(1-2i\right)\left(4-3i\right)}{\left(4+3i\right)}}{\left(4-3i\right)}\) - step1: Remove the parentheses: \(\frac{\frac{\left(3+2i\right)\left(1-2i\right)\left(4-3i\right)}{4+3i}}{4-3i}\) - step2: Multiply the terms: \(\frac{\frac{16-37i}{4+3i}}{4-3i}\) - step3: Divide the terms: \(\frac{-\frac{47}{25}-\frac{196}{25}i}{4-3i}\) - step4: Multiply by the Conjugate: \(\frac{\left(-\frac{47}{25}-\frac{196}{25}i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\) - step5: Calculate: \(\frac{16-37i}{\left(4-3i\right)\left(4+3i\right)}\) - step6: Calculate: \(\frac{16-37i}{25}\) - step7: Simplify: \(\frac{16}{25}-\frac{37}{25}i\) The simplified expression for \( z \) is \( \frac{16}{25} - \frac{37}{25}i \). Now, we can find the conjugate and magnitude of \( z \). The conjugate of \( z \) is \( \overline{z} = \frac{16}{25} + \frac{37}{25}i \). The magnitude of \( z \) is \( |z| = \sqrt{\left(\frac{16}{25}\right)^2 + \left(\frac{37}{25}\right)^2} \). Let's calculate the magnitude of \( z \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\left(\frac{16}{25}\right)^{2}+\left(\frac{37}{25}\right)^{2}}\) - step1: Add the numbers: \(\sqrt{\frac{13}{5}}\) - step2: Use the properties of radicals: \(\frac{\sqrt{13}}{\sqrt{5}}\) - step3: Multiply by the Conjugate: \(\frac{\sqrt{13}\times \sqrt{5}}{\sqrt{5}\times \sqrt{5}}\) - step4: Multiply the numbers: \(\frac{\sqrt{65}}{\sqrt{5}\times \sqrt{5}}\) - step5: Multiply the numbers: \(\frac{\sqrt{65}}{5}\) The magnitude of \( z \) is \( \frac{\sqrt{65}}{5} \). Therefore, the conjugate of \( z \) is \( \frac{16}{25} + \frac{37}{25}i \) and the magnitude of \( z \) is \( \frac{\sqrt{65}}{5} \). (b) If \( z \) is a complex number, then \( |z| \geq 0 \) and \( |z| = 0 \) if and only if \( z = 0 \). This statement is true because the magnitude of a complex number is always non-negative, and it is zero only when the complex number is zero.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the conjugate and magnitude of \( z=\frac{(3+2 i)(1-2 i)}{4+3 i} \), we first compute the numerator and denominator separately. The numerator becomes \((3+2i)(1-2i) = 3 - 6i + 2i + 4 = 7 - 4i\). The denominator remains as \(4 + 3i\). Now, we can express \(z\) in standard form: \[ z = \frac{(7-4i)(4-3i)}{(4+3i)(4-3i)} = \frac{(28 - 21i - 16i + 12)}{16 + 9} = \frac{40 - 37i}{25} = \frac{40}{25} - \frac{37}{25}i = \frac{8}{5} - \frac{37}{25}i \] The conjugate of \(z\) is \(\frac{8}{5} + \frac{37}{25}i\) and the magnitude is \(|z| = \sqrt{(\frac{8}{5})^2 + (-\frac{37}{25})^2} = \sqrt{\frac{64}{25} + \frac{1369}{625}} = \sqrt{\frac{1600}{625}} = \frac{40}{25} = \frac{8}{5}\). Now onto the evaluation of \(z=3(1-2 i)+2 i(1-2 i)\): First, calculate \(3(1-2i) = 3 - 6i\) and \(2i(1-2i) = 2i - 4i^2 = 2i + 4 = 4 + 2i\). Adding these results gives: \[ z = (3 - 6i) + (4 + 2i) = (3 + 4) + (-6i + 2i) = 7 - 4i. \] Voila! We've got \(z = 7 - 4i\). Now, you can explore more about the delightful world of complex numbers and their applications in engineering and physics.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad