Responder
(a) The conjugate of \( z \) is \( \frac{16}{25} + \frac{37}{25}i \) and the magnitude of \( z \) is \( \frac{\sqrt{65}}{5} \).
(b) If \( z \) is a complex number, then \( |z| \geq 0 \) and \( |z| = 0 \) if and only if \( z = 0 \).
Solución
(a) To find the conjugate and magnitude of the complex number \( z=\frac{(3+2i)(1-2i)}{4+3i} \), we first need to simplify the expression.
Given:
\[ z=\frac{(3+2i)(1-2i)}{4+3i} \]
To simplify the expression, we can multiply the numerator and denominator by the conjugate of the denominator to eliminate the complex number in the denominator.
The conjugate of \( 4+3i \) is \( 4-3i \).
Multiplying the numerator and denominator by \( 4-3i \), we get:
\[ z=\frac{(3+2i)(1-2i)(4-3i)}{(4+3i)(4-3i)} \]
Now, we can simplify the expression further:
\[ z=\frac{(3+2i)(1-2i)(4-3i)}{4^2-(3i)^2} \]
\[ z=\frac{(3+2i)(1-2i)(4-3i)}{16+9} \]
\[ z=\frac{(3+2i)(1-2i)(4-3i)}{25} \]
Now, we can find the conjugate and magnitude of \( z \).
The conjugate of \( z \) is \( \overline{z} \), which is obtained by changing the sign of the imaginary part.
The magnitude of \( z \) is \( |z| \), which is the square root of the sum of the squares of the real and imaginary parts.
Let's calculate the conjugate and magnitude of \( z \) using the simplified expression.
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\frac{\left(3+2i\right)\left(1-2i\right)\left(4-3i\right)}{\left(4+3i\right)}}{\left(4-3i\right)}\)
- step1: Remove the parentheses:
\(\frac{\frac{\left(3+2i\right)\left(1-2i\right)\left(4-3i\right)}{4+3i}}{4-3i}\)
- step2: Multiply the terms:
\(\frac{\frac{16-37i}{4+3i}}{4-3i}\)
- step3: Divide the terms:
\(\frac{-\frac{47}{25}-\frac{196}{25}i}{4-3i}\)
- step4: Multiply by the Conjugate:
\(\frac{\left(-\frac{47}{25}-\frac{196}{25}i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\)
- step5: Calculate:
\(\frac{16-37i}{\left(4-3i\right)\left(4+3i\right)}\)
- step6: Calculate:
\(\frac{16-37i}{25}\)
- step7: Simplify:
\(\frac{16}{25}-\frac{37}{25}i\)
The simplified expression for \( z \) is \( \frac{16}{25} - \frac{37}{25}i \).
Now, we can find the conjugate and magnitude of \( z \).
The conjugate of \( z \) is \( \overline{z} = \frac{16}{25} + \frac{37}{25}i \).
The magnitude of \( z \) is \( |z| = \sqrt{\left(\frac{16}{25}\right)^2 + \left(\frac{37}{25}\right)^2} \).
Let's calculate the magnitude of \( z \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\left(\frac{16}{25}\right)^{2}+\left(\frac{37}{25}\right)^{2}}\)
- step1: Add the numbers:
\(\sqrt{\frac{13}{5}}\)
- step2: Use the properties of radicals:
\(\frac{\sqrt{13}}{\sqrt{5}}\)
- step3: Multiply by the Conjugate:
\(\frac{\sqrt{13}\times \sqrt{5}}{\sqrt{5}\times \sqrt{5}}\)
- step4: Multiply the numbers:
\(\frac{\sqrt{65}}{\sqrt{5}\times \sqrt{5}}\)
- step5: Multiply the numbers:
\(\frac{\sqrt{65}}{5}\)
The magnitude of \( z \) is \( \frac{\sqrt{65}}{5} \).
Therefore, the conjugate of \( z \) is \( \frac{16}{25} + \frac{37}{25}i \) and the magnitude of \( z \) is \( \frac{\sqrt{65}}{5} \).
(b) If \( z \) is a complex number, then \( |z| \geq 0 \) and \( |z| = 0 \) if and only if \( z = 0 \).
This statement is true because the magnitude of a complex number is always non-negative, and it is zero only when the complex number is zero.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución