Pregunta
upstudy study bank question image url

Four students are trying to find the rule that translates point \( N(-2,-4) \) to \( N^{\prime}(2,4) \). Each student's reasoning is shown below. \( \begin{array}{ll}\text { Raheem: } & \text { The rule is }(x \bullet(-1), y \bullet(-1)) \text { because }-2 \bullet(-1)=2 \text { and }-4 \bullet(-1)=4 \\ \text { Casey: } & \text { The rule is }(x+2, y+4) \text { because the image is }(2,4) \text {. } \\ \text { Andrew: } & \text { The rule is }(x+4, y+0) \text { because the coordinates are opposites. } \\ \text { Lo: } & \text { The rule is }(x+4, y+8) \text { because }-2+4=2 \text { and }-4+8=4 . \\ \text { Which student is correct? } \\ \text { Raheem } \\ \text { Casey } \\ \text { Andrew } \\ \text { Lo }\end{array} \)

Ask by Watkins Schneider. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Lo is correct because her rule \( (x + 4, y + 8) \) accurately translates point \( N(-2, -4) \) to \( N^{\prime}(2, 4) \).

Solución

To determine which student correctly identifies the rule that translates point \( N(-2, -4) \) to \( N^{\prime}(2, 4) \), let's evaluate each proposed rule: 1. **Raheem:** **Rule:** \( (x \times (-1), y \times (-1)) \) **Application:** \[ (-2 \times (-1), -4 \times (-1)) = (2, 4) \] **Analysis:** This correctly maps \( N \) to \( N^{\prime} \). However, this operation is a reflection through the origin, not a translation. 2. **Casey:** **Rule:** \( (x + 2, y + 4) \) **Application:** \[ (-2 + 2, -4 + 4) = (0, 0) \] **Analysis:** This maps \( N \) to \( (0, 0) \), which is incorrect. 3. **Andrew:** **Rule:** \( (x + 4, y + 0) \) **Application:** \[ (-2 + 4, -4 + 0) = (2, -4) \] **Analysis:** This maps \( N \) to \( (2, -4) \), which is incorrect. 4. **Lo:** **Rule:** \( (x + 4, y + 8) \) **Application:** \[ (-2 + 4, -4 + 8) = (2, 4) \] **Analysis:** This correctly maps \( N \) to \( N^{\prime}(2, 4) \). **Conclusion:** While Raheem's rule mathematically maps \( N \) to \( N^{\prime} \), it describes a reflection rather than a translation. Lo's rule correctly describes a translation that shifts \( N \) to \( N^{\prime} \). **Answer:** Lo

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's break down the reasoning of each student to identify the correct rule for translating point \( N(-2,-4) \) to \( N^{\prime}(2,4) \). Raheem's method, \((x \cdot(-1), y \cdot(-1))\), flips the coordinates to \( (2, 4) \) but doesn't involve addition; it just reflects the point over the origin. Casey suggests \((x+2, y+4)\), which translates the original point \( (-2, -4) \) correctly to \( (2, 4) \), making this the right choice. Andrew's and Lo's suggestions involve incorrect changes that don’t lead to the desired coordinates. Thus, Casey is the correct student! Now, let's take a quick peek into some fun and engaging facts related to this translation scenario. Mathematics isn't just about numbers—it's also a form of art! Many transformations, like translations, can be visually represented as movements of shapes on a graph. Just imagine sliding a triangle across the grid; it’s like a little dance party on paper! In the world of geometry, understanding transformations opens the door to advanced concepts like symmetry, which can be found in nature, architecture, and even art! If you're interested, consider diving into books about geometric transformations or exploring fractals where rule-based patterns thrive!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad