Pregunta
upstudy study bank question image url

For ,
(a) Identify the center.
(b) Identify the vertices.
© Identify the foci.
(d) Write equations for the asymptotes.
(e) Graph the hyperbola.
Give exact answers. Express numbers in simplest form using integers, fractions, or radicals.
Part 1 of 5
(a) The center is ).
Part 2 of 5
(b) The vertices are and .
Part 3 of 5
© The foci are and .
Part:
Part 4 of 5
(d) The asymptotes are and .

Ask by Floyd Blake. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Center:
(b) Vertices: and
© Foci: and
(d) Asymptotes:
(e) Graph of the hyperbola is not provided here.

Solución

The hyperbola is given in standard form as
For a vertical hyperbola in the form
the center is , the vertices are , the foci are with , and the asymptotes are given by
For the given hyperbola:
  • The center is .
  • The value for is 1, so .
  • The value for is 18, so .
  • To find , compute
Thus, the foci are located at
The equations for the asymptotes, using the center , are
Since , the asymptotes are
It is often preferable to rationalize the coefficient:
Thus, the equations for the asymptotes can also be written as
So the answers for part (d) are:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the asymptotes for the hyperbola given by the equation , we can follow the properties of hyperbolas centered at (h,k). The standard form of the hyperbola is . Here, and , which means and .
The asymptote equations can be derived as follows:
  1. The center is at the point .
  2. The slopes of the asymptotes are .
Thus, the equations of the asymptotes are:
So, for your answer, you can express them as:
Now let’s move to graphing the hyperbola.
For the graph, plot the center at (-5, 0), draw the vertices at (-5, 1) and (-5, -1), and indicate the foci. The asymptotes extend diagonally from the center and help guide the shape of the hyperbola, which opens up and down since the term is positive. Make sure to sketch the hyperbola’s branches approaching the asymptotes but never touching them! Enjoy your hyperbolic exploration!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad