Pregunta
upstudy study bank question image url

Assignment Sketch a graph of f . \( f(x)=4 x^{2} \)

Ask by Cole Elliott. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of \( f(x) = 4x^2 \), plot the vertex at (0,0), draw a symmetric parabola opening upwards, and plot key points like (-2,16), (-1,4), (0,0), (1,4), and (2,16). Connect these points with a smooth curve to form the parabola.

Solución

To sketch the graph of the function \( f(x) = 4x^2 \), we can follow these steps: 1. **Identify the type of function**: The function \( f(x) = 4x^2 \) is a quadratic function, which means its graph will be a parabola. 2. **Determine the vertex**: The vertex of the parabola represented by \( f(x) = ax^2 + bx + c \) is at the point \( (0, 0) \) since there are no linear or constant terms (i.e., \( b = 0 \) and \( c = 0 \)). 3. **Determine the direction of the parabola**: Since the coefficient of \( x^2 \) (which is 4) is positive, the parabola opens upwards. 4. **Calculate some key points**: We can calculate the values of \( f(x) \) for several values of \( x \): - \( f(-2) = 4(-2)^2 = 16 \) - \( f(-1) = 4(-1)^2 = 4 \) - \( f(0) = 4(0)^2 = 0 \) - \( f(1) = 4(1)^2 = 4 \) - \( f(2) = 4(2)^2 = 16 \) 5. **Plot the points**: The points we have calculated are: - \( (-2, 16) \) - \( (-1, 4) \) - \( (0, 0) \) - \( (1, 4) \) - \( (2, 16) \) 6. **Draw the graph**: Connect these points with a smooth curve to form the parabola. ### Summary of the Graph - The vertex is at \( (0, 0) \). - The parabola opens upwards. - The graph is symmetric about the y-axis. You can sketch this on graph paper or using graphing software by plotting the points and drawing the curve through them.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To sketch the graph of \( f(x) = 4x^2 \), start by identifying that this is a quadratic function that opens upwards, as the coefficient of \( x^2 \) is positive. The vertex of the graph is at the origin (0,0), and as you move away from the vertex in either direction along the x-axis, the y-values increase. This means the graph will be a "U" shape. Additionally, note that at \( x = \pm 1 \), \( f(1) = 4(1)^2 = 4 \) and \( f(-1) = 4(-1)^2 = 4 \), giving you points (1,4) and (-1,4) to plot. Now, for a little extra flair, remember that the wider the spacing of the x-values, the higher the y-values will soar! This is due to the '4' multiplier making the graph steeper than the basic \( x^2 \) shape. So, grab some graph paper, add those key points, and don’t forget—quadratics are all about symmetry around the vertex!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad