Pregunta
upstudy study bank question image url

A ball is picked randomly from a bag containing 10 yellow, 15 blue white balls. What is the probability a white ball is selected? \( \begin{array}{llll}\text { a. } 5 / 6 & \text { b. } 1 / 3 & \text { c. } 3 / 5 & \text { d. } 1 / 6\end{array} \)

Ask by Chandler Crawford. in Ghana
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of selecting a white ball is \( \frac{1}{6} \).

Solución

To find the probability of selecting a white ball from the bag, we can follow these steps: 1. **Identify the total number of balls in the bag.** - Yellow balls: 10 - Blue balls: 15 - White balls: 5 The total number of balls is: \[ \text{Total balls} = 10 + 15 + 5 = 30 \] 2. **Identify the number of favorable outcomes.** - The number of white balls is 5. 3. **Calculate the probability of selecting a white ball.** The probability \( P \) of selecting a white ball is given by the formula: \[ P(\text{white}) = \frac{\text{Number of white balls}}{\text{Total number of balls}} = \frac{5}{30} \] 4. **Simplify the fraction.** \[ P(\text{white}) = \frac{5}{30} = \frac{1}{6} \] Thus, the probability of selecting a white ball is \( \frac{1}{6} \). The correct answer is **d. \( \frac{1}{6} \)**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability of selecting a white ball, you first need to determine the total number of balls in the bag. You have 10 yellow, 15 blue, and 5 white balls, giving you a total of \(10 + 15 + 5 = 30\) balls. The probability of selecting a white ball is the number of white balls divided by the total number of balls. So, it’s calculated as \( \frac{5}{30} = \frac{1}{6} \). Therefore, the correct answer is option d. \(1/6\). Probability can be a tricky concept, but think of it like picking a candy from a jar. If you had a jar with 6 candies, and only 1 of them was chocolate, the chance of getting that chocolate candy is just 1 out of those 6—simple and sweet! In real-life scenarios, understanding probability can be crucial for decision-making, whether you're betting on a game, choosing a product based on reviews, or even figuring out which route to take to avoid traffic. The higher the probability, the more likely the event will occur, helping you make informed choices every day!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad