Determine the value of ' \( k \) ' if the line given by \( y=-2 x+k \) is a by tangent to the function given by \( y=-x^{2}+4 x+5 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the value of \( k \) where the line \( y = -2x + k \) is a tangent to the parabola \( y = -x^2 + 4x + 5 \), we first set the equations equal to each other: \[ -2x + k = -x^2 + 4x + 5 \] Rearranging gives us: \[ x^2 + 6x + (5 - k) = 0 \] For the line to be tangent to the parabola, the quadratic equation must have exactly one solution, which occurs when the discriminant is zero. The discriminant \( D \) is given by: \[ D = b^2 - 4ac \] Here, \( a = 1 \), \( b = 6 \), and \( c = 5 - k \): \[ D = 6^2 - 4(1)(5 - k) = 36 - 20 + 4k = 16 + 4k \] Setting the discriminant \( D \) equal to zero: \[ 16 + 4k = 0 \] Solving for \( k \): \[ 4k = -16 \quad \Rightarrow \quad k = -4 \] Thus, the value of \( k \) is \( -4 \).