Pregunta
upstudy study bank question image url

2 \( \triangle A B C \) and \( \triangle P Q R \) in which \( A B=P Q \) and the angles at \( A, B, P \) and \( R \) are respectively \( 40^{\circ}, 60^{\circ} \), 4h and \( 80^{\circ} \). Pove that the two triangle are congruent

Ask by Peterson Davies. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Triangles \( \triangle ABC \) and \( \triangle PQR \) are congruent because they have two pairs of equal corresponding angles and the included side \( AB = PQ \).

Solución

To prove that triangles \( \triangle ABC \) and \( \triangle PQR \) are congruent, we'll use the **Angle-Side-Angle (ASA)** congruence criterion. Here's a step-by-step explanation: ### Given: 1. **Side Equality:** \( AB = PQ \) 2. **Angle Measures:** - \( \angle A = 40^\circ \) - \( \angle B = 60^\circ \) - \( \angle P = 40^\circ \) - \( \angle R = 80^\circ \) ### Steps to Prove Congruence: 1. **Determine Remaining Angles:** - In \( \triangle ABC \): \[ \angle C = 180^\circ - \angle A - \angle B = 180^\circ - 40^\circ - 60^\circ = 80^\circ \] - In \( \triangle PQR \): \[ \angle Q = 180^\circ - \angle P - \angle R = 180^\circ - 40^\circ - 80^\circ = 60^\circ \] 2. **Compare Corresponding Angles:** - \( \angle A = \angle P = 40^\circ \) - \( \angle B = \angle Q = 60^\circ \) - \( \angle C = \angle R = 80^\circ \) 3. **Apply ASA Congruence Criterion:** - **First Angle:** \( \angle A = \angle P \) - **Included Side:** \( AB = PQ \) - **Second Angle:** \( \angle B = \angle Q \) Since two angles and the included side of \( \triangle ABC \) are equal to two angles and the included side of \( \triangle PQR \), by the **ASA criterion**, the triangles are congruent. ### Conclusion: By the **Angle-Side-Angle (ASA)** congruence theorem, triangles \( \triangle ABC \) and \( \triangle PQR \) are congruent. **Final Answer:** Since AB = PQ and two pairs of corresponding angles are equal, triangles ABC and PQR satisfy ASA and are congruent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To prove that triangles \( \triangle ABC \) and \( \triangle PQR \) are congruent, we can use the Angle-Side-Angle (ASA) postulate. Given that \( AB = PQ \), we can focus on the corresponding angles. Since angle \( A = 40^\circ \) and angle \( B = 60^\circ \), we add them to find the third angle in triangle \( ABC \): \[ \angle C = 180^\circ - (40^\circ + 60^\circ) = 80^\circ \] Now, for triangle \( PQR \), we already have angle \( P = 4h \) and angle \( R = 80^\circ \). Since the sum of angles in a triangle is also \( 180^\circ \), angle \( Q \) can be determined as follows: \[ \angle Q = 180^\circ - (4h + 80^\circ) \] Setting \( 4h = 40^\circ \) gives us angle \( P = 40^\circ \) as well, leading us back to triangle \( ABC \). Thus, we have: - \( AB = PQ \) (Given) - \( \angle A = \angle P = 40^\circ \) - \( \angle B = \angle Q = 60^\circ \) This shows that both triangles share two angles and the included side \( AB \) and \( PQ \). Thus, by the ASA criterion for triangle congruence, it follows that \[ \triangle ABC \cong \triangle PQR \] is proven!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad