Pregunta
Using the following equations, find \( f(g(x)) \) : \( f(x)=x^{2} \) \( g(x)=x-1 \) \( \left.f(g(x))=[?] x^{2}+\square x+\square\right] \)
Ask by Rodriquez Hobbs. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( f(g(x)) = x^2 - 2x + 1 \)
Solución
To find \( f(g(x)) \) given the functions \( f(x) = x^2 \) and \( g(x) = x - 1 \), follow these steps:
1. **Compose the Functions:**
\( f(g(x)) = f(x - 1) \)
2. **Apply the Function \( f \) to \( g(x) \):**
\( f(x - 1) = (x - 1)^2 \)
3. **Expand the Square:**
\[
(x - 1)^2 = x^2 - 2x + 1
\]
So, the composed function \( f(g(x)) \) is:
\[
f(g(x)) = x^2 - 2x + 1
\]
**Filled in the placeholders:**
\[
f(g(x)) = [1]x^2 + [-2]x + [1]
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find \( f(g(x)) \), we start by substituting \( g(x) \) into \( f(x) \). Given that \( g(x) = x - 1 \), we need to evaluate \( f(g(x)) = f(x - 1) \). Now, applying the function \( f(x) = x^{2} \): \[ f(g(x)) = f(x - 1) = (x - 1)^{2} \] Next, we expand \( (x - 1)^{2} \): \[ (x - 1)^{2} = x^{2} - 2x + 1 \] Thus, we can express \( f(g(x)) \) in the required form: \[ f(g(x)) = x^{2} - 2x + 1 \] Therefore, we have: \[ \left.f(g(x))=[x^{2}-2x+1\right] \] So, the final values for the boxes are -2 and 1 respectively.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium