\( \times \) Find the greatest common factor of the exp \( 18 y c^{4} \) \( 66 y^{5} c^{5} \) \( 42 y^{2} c^{4} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the greatest common factor (GCF) of the expressions \( 18 y c^{4} \), \( 66 y^{5} c^{5} \), and \( 42 y^{2} c^{4} \), we will first find the GCF of the numerical coefficients and then the variables. 1. **Numerical Coefficients:** - The coefficients are \( 18, 66, \) and \( 42 \). - Factors of 18: \( 1, 2, 3, 6, 9, 18 \) - Factors of 66: \( 1, 2, 3, 6, 11, 22, 33, 66 \) - Factors of 42: \( 1, 2, 3, 6, 7, 14, 21, 42 \) - The common factors are \( 1, 2, 3, \text{ and } 6 \). The greatest of these is \( 6 \). 2. **Variable Parts:** - For \( y \): The minimum exponent among \( y^1 \), \( y^5 \), and \( y^2 \) is \( y^1 \). - For \( c \): The minimum exponent among \( c^4 \), \( c^5 \), and \( c^4 \) is \( c^4 \). Putting it all together, the GCF of the given expressions is: \[ \text{GCF} = 6 y c^{4} \]