Pregunta
upstudy study bank question image url

Question 19 Find the final amount of money in an account if \( \$ 8,300 \) is deposited at \( 5.5 \% \) interest compounded annually and the money is left for 9 years. The final amount is \( \$ \square \) Next Question Round answer to 2 decimal places P

Ask by Hardy Potter. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The final amount of money in the account is approximately \$13,438.48.

Solución

To find the final amount of money in an account after depositing $8,300 at 5.5% interest compounded annually for 9 years, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] where: - \( A \) is the final amount of money in the account - \( P \) is the principal amount (initial deposit) - \( r \) is the annual interest rate - \( n \) is the number of years the money is left in the account Given: - \( P = \$8,300 \) - \( r = 5.5\% \) - \( n = 9 \) years Substitute the given values into the formula: \[ A = 8300 \left( 1 + \frac{5.5}{100} \right)^9 \] Now, we can calculate the final amount of money in the account. Calculate the value by following steps: - step0: Calculate: \(8300\left(1+\frac{5.5}{100}\right)^{9}\) - step1: Divide the terms: \(8300\left(1+\frac{11}{200}\right)^{9}\) - step2: Add the numbers: \(8300\left(\frac{211}{200}\right)^{9}\) - step3: Simplify: \(8300\times \frac{211^{9}}{200^{9}}\) - step4: Rewrite the expression: \(100\times 83\times \frac{211^{9}}{200^{9}}\) - step5: Rewrite the expression: \(100\times 83\times \frac{211^{9}}{100^{9}\times 2^{9}}\) - step6: Reduce the numbers: \(83\times \frac{211^{9}}{100^{8}\times 2^{9}}\) - step7: Multiply the fractions: \(\frac{83\times 211^{9}}{512\times 100^{8}}\) The final amount of money in the account after depositing $8,300 at 5.5% interest compounded annually for 9 years is approximately $13,438.48.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the final amount using compound interest, we can use the formula: \[ A = P(1 + r/n)^{nt} \] Where: \( A \) is the amount of money accumulated after n years, including interest. \( P \) is the principal amount (the initial deposit). \( r \) is the annual interest rate (decimal). \( n \) is the number of times that interest is compounded per year. \( t \) is the time the money is invested or borrowed for, in years. In this case: \( P = 8300 \) \( r = 0.055 \) \( n = 1 \) (compounded annually) \( t = 9 \) Plugging in the values will give us: \[ A = 8300(1 + 0.055/1)^{1 \times 9} = 8300(1.055)^{9} \] Calculating further: \[ A = 8300(1.550078) \approx 12825.65 \] Thus, the final amount is approximately \( \$12,825.65 \). --- Did you know that compound interest is often referred to as "interest on interest"? This means your money grows faster than with simple interest, which just adds a fixed amount each year. The longer you invest, the more exponential your growth becomes. It's like a snowball effect! If you're planning on using a compound interest strategy, remember to keep a close eye on the frequency of compounding—monthly, quarterly, or annually can all make a significant difference in your final amount. And always double-check how the interest rate is compounded; some financial institutions may have specific rules that could affect your total returns!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad