In 1-4, find each sum. 1. \( \frac{1}{2}+\frac{1}{6} \) Least multiple that is the same: Add using renamed fractions: 2. \( \frac{1}{9}+\frac{5}{6} \) \[ +1=2 \text { or }- \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the sum of \( \frac{1}{2} + \frac{1}{6} \), we first identify the least common multiple (LCM) of the denominators 2 and 6, which is 6. We rename the fractions accordingly: \( \frac{1}{2} = \frac{3}{6} \). Now we can add: \( \frac{3}{6} + \frac{1}{6} = \frac{4}{6} \). Simplifying gives us \( \frac{2}{3} \). For the second sum \( \frac{1}{9} + \frac{5}{6} \), the LCM of 9 and 6 is 18. Renaming the fractions, we have \( \frac{1}{9} = \frac{2}{18} \) and \( \frac{5}{6} = \frac{15}{18} \). Adding these gives us \( \frac{2}{18} + \frac{15}{18} = \frac{17}{18} \). So, the final answers are: 1. \( \frac{2}{3} \) 2. \( \frac{17}{18} \)