4 The first three terms of the sequence \( 6 ; x ; y ; 16 \) form an arithmetic progression and the last three ferms form a geometric progression. 4.1 Determine \( x \) and \( y \). 4.2 State the arithmetic and geometric sequences for each of your solutions.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( x \) and \( y \), we know that in an arithmetic progression, the difference between consecutive terms is consistent. Therefore, we can write the equation for \( x \) as: \[ x = 6 + d \] where \( d \) is the common difference. Then for \( y \): \[ y = x + d = (6 + d) + d = 6 + 2d \] Given that the last three terms \( x \), \( y \), and \( 16 \) form a geometric progression, the ratio between consecutive terms must be equal. Thus we have: \[ \frac{y}{x} = \frac{16}{y} \] Cross-multiplying gives: \[ y^2 = 16x \] Now substituting \( x \) and \( y \) in terms of \( d \): 1. From \( y = 6 + 2d \): \( (6 + 2d)^2 = 16(6 + d) \) Simplifying: \( 36 + 24d + 4d^2 = 96 + 16d \) Rearranging to form a quadratic equation: \( 4d^2 + 8d - 60 = 0 \) Dividing by 4: \( d^2 + 2d - 15 = 0 \) Factoring gives us: \( (d + 5)(d - 3) = 0 \) Thus, \( d = -5 \) or \( d = 3 \). 2. If \( d = 3 \): \( x = 6 + 3 = 9 \) \( y = 6 + 2(3) = 12 \) 3. If \( d = -5 \): \( x = 6 - 5 = 1 \) \( y = 6 + 2(-5) = -4 \) Thus, we have two sets of values for \( (x, y) \): \( (9, 12) \) and \( (1, -4) \). For the two cases: If \( (x, y) = (9, 12) \): - Arithmetic sequence: \( 6, 9, 12, 16 \) - Geometric sequence: \( 9, 12, 16 \) with common ratio \( \frac{12}{9} = \frac{16}{12} = \frac{4}{3} \). If \( (x, y) = (1, -4) \): - Arithmetic sequence: \( 6, 1, -4, 16 \) - Geometric sequence: \( 1, -4, 16 \) with common ratio \( \frac{-4}{1} = \frac{16}{-4} = -4 \).