QUESTION 3 3.1 The third term of a geometric series is 7 and the sixth term is -2401 . 3.1.1 Determine the first term and the common ratio. If the first terms of a geometric series are \( 2+6+18+\cdots \) then what is the value \( n \) if \( S_{n}=177146 ? \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
In a geometric series, each term can be expressed as a multiple of the previous term. Given that the third term is 7, we can express it as \( ar^2 = 7 \). For the sixth term, \( ar^5 = -2401 \). By dividing these two equations, we find the common ratio \( r \) to be -7. Then, substituting \( r \) back into the equation for the third term, we discover the first term \( a = 1 \). For the series \( 2 + 6 + 18 + \cdots \), it has first term \( a = 2 \) and a common ratio \( r = 3 \). The sum of the first \( n \) terms, \( S_n \), can be calculated using the formula \( S_n = a \frac{(r^n - 1)}{(r - 1)} \). Setting \( S_n = 177146 \) and solving for \( n \), you would find that \( n = 10 \). Happy calculating!