Pregunta
upstudy study bank question image url

A roulette wheel has 34 slots around the rim; 32 slots are numbered from 1 to 32 . Half of these 32 slots are red, and the other half are black. The remaining 2 slots are numbered 0 and 00 and are green. As the roulette wheel is spun in one direction, a small ivory ball is rolled along the rim in the opposite direction. The ball has an equality likely chance of falling into any one of the 34 slots. Find the probabilities of the events listed in parts (a) through (d) below. a. Ball lands in a red slot The probability of the event that the ball lands in a red slot is \( \frac{8}{17} \). (Type an integer or a simplified fraction.) b. Ball lands on 0 or 32 The probability of the event that the ball lands on 0 or 32 is \( \frac{1}{17} \). (Type an integer or a simplified fraction.) c. Ball does not land on a number from 6 through 28 The probability of the event that the ball does not land on a number from 6 through 28 is \( \frac{11}{34} \). (Type an integer or a simplified fraction.) d. Ball lands on an odd number or on a green slot The probability of the event that the ball lands on an odd number or on a green slot is (Type an integer or a simplified fraction.)

Ask by Page Johnston. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that the ball lands on an odd number or on a green slot is \( \frac{9}{17} \).

Solución

To solve part (d), we need to determine the probability that the ball lands on an **odd number** or on a **green slot**. ### **Details of the Roulette Wheel:** - **Total Slots:** 34 - **Numbered Slots:** 32 (numbered from 1 to 32) - **Red Slots:** 16 - **Black Slots:** 16 - **Green Slots:** 2 (numbered 0 and 00) ### **Calculating the Probability:** 1. **Odd Numbers:** - The numbers range from 1 to 32. - **Number of Odd Numbers:** 16 (since half of the numbers from 1 to 32 are odd). 2. **Green Slots:** - There are 2 green slots: 0 and 00. 3. **Total Favorable Outcomes:** - **Odd Numbers:** 16 - **Green Slots:** 2 - **Total:** \( 16 + 2 = 18 \) 4. **Total Possible Outcomes:** - 34 slots in total. 5. **Probability:** \[ \text{Probability} = \frac{\text{Favorable Outcomes}}{\text{Total Possible Outcomes}} = \frac{18}{34} \] - Simplifying the fraction: \[ \frac{18}{34} = \frac{9}{17} \] ### **Final Answer:** \[ \boxed{\dfrac{9}{17}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability of the events listed, let's break down the information we know: a. For the red slots, there are 16 red slots (half of 32). Therefore, the probability that the ball lands in a red slot is \( \frac{16}{34} = \frac{8}{17} \). b. For the event that the ball lands on 0 or 32, there are 2 favorable outcomes (0 and 32) out of 34 total slots. Thus, the probability is \( \frac{2}{34} = \frac{1}{17} \). c. The numbers from 6 through 28 are \( 6, 7, 8, \ldots, 28 \), which includes 23 numbers. Therefore, the numbers not in this range are \( 0, 1, 2, 3, 4, 5, 29, 30, 31, 32, 00 \), amounting to 11 numbers. The probability of not landing on a number from 6 through 28 is \( \frac{11}{34} \). d. To find the probability of landing on an odd number or a green slot: - The odd numbers from 1 to 32: \( 1, 3, 5, 7, ..., 31 \), which gives us 16 odd numbers. - We also have the two green slots: \( 0 \) and \( 00 \). Now, let's count: - Odd numbers = 16 - Green slots = 2 - There is no overlap between these two sets, so we can simply add them. Total favorable outcomes = 16 (odd numbers) + 2 (green) = 18. Thus, the probability of landing on an odd number or green is: \[ \frac{18}{34} = \frac{9}{17} \] Summarizing: a. Ball lands in a red slot: \( \frac{8}{17} \) b. Ball lands on 0 or 32: \( \frac{1}{17} \) c. Ball does not land on a number from 6 through 28: \( \frac{11}{34} \) d. Ball lands on an odd number or on a green slot: \( \frac{9}{17} \)

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad