Find the zero of the polynomial in each of the following cases: \( \begin{array}{lll}\text { (i) } p(x)=x-5 & \text { (ii) } p(x)=x-5 & \text { (iii) } p(x)=2 x+5 \\ \text { (iv) } p(x)=3 x-2 & \text { (v) } p(x)=3 x & \text { (vi) } p(x)=a x, a \neq 0 \\ \text { (vii) } p(x)=c x+d, c \neq 0, c, d \text { are real numbers. } & \end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the zeros of the given polynomials, we need to solve \( p(x) = 0 \). 1. **(i)** For \( p(x) = x - 5 \): Set \( x - 5 = 0 \) which gives \( x = 5 \). 2. **(ii)** For \( p(x) = x - 5 \): Repeat the previous step, yielding the same zero \( x = 5 \). 3. **(iii)** For \( p(x) = 2x + 5 \): Set \( 2x + 5 = 0 \) which simplifies to \( 2x = -5 \); solving gives \( x = -\frac{5}{2} \). 4. **(iv)** For \( p(x) = 3x - 2 \): Set \( 3x - 2 = 0 \); thus, \( 3x = 2 \) leads to \( x = \frac{2}{3} \). 5. **(v)** For \( p(x) = 3x \): Set \( 3x = 0 \) which simplifies to \( x = 0 \). 6. **(vi)** For \( p(x) = ax \) (where \( a \neq 0 \)): Set \( ax = 0 \) which results in \( x = 0 \). 7. **(vii)** For \( p(x) = cx + d \) (with \( c \neq 0 \)): Set \( cx + d = 0 \); thus, \( cx = -d \), giving us \( x = -\frac{d}{c} \). And that's the scoop on finding the zeros! 🎉