Pregunta
upstudy study bank question image url

Use a graphing calculator to solve the equation by graphing. If necessary, round to the nearest hundredth. \( x^{3}-9 x^{2}+27 x=20 \)

Ask by Summers Stanley. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the equation \( x^3 - 9x^2 + 27x = 20 \) is approximately \( x \approx 1.09 \).

Solución

To solve the equation \( x^3 - 9x^2 + 27x = 20 \) using a graphing calculator, we'll follow these steps: 1. **Rearrange the Equation:** First, rewrite the equation in the standard form: \[ x^3 - 9x^2 + 27x - 20 = 0 \] 2. **Graph the Function:** Plot the function \( f(x) = x^3 - 9x^2 + 27x - 20 \) on a graphing calculator. 3. **Identify the Root:** By observing the graph, you'll notice that the function crosses the x-axis between \( x = 1 \) and \( x = 2 \). This indicates there's a real root in this interval. 4. **Narrow Down the Root:** To approximate the root more precisely: - **At \( x = 1.08 \):** \[ f(1.08) \approx -0.0779 \] - **At \( x = 1.09 \):** \[ f(1.09) \approx 0.0322 \] The root lies between \( x = 1.08 \) and \( x = 1.09 \). 5. **Approximate the Root:** Using linear interpolation between these points: \[ x \approx 1.087 \] Rounding to the nearest hundredth: \[ x \approx 1.09 \] **Solution:** The solution to the equation \( x^3 - 9x^2 + 27x = 20 \) is approximately: \[ x \approx 1.09 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( x^{3}-9 x^{2}+27 x-20=0 \) by graphing, first, rearrange it into the standard form \( y = x^{3}-9 x^{2}+27 x - 20 \). Once entered into a graphing calculator, look for the x-values where the graph intersects the x-axis. These points indicate the roots of the equation. You may need to adjust the viewing window to clearly see the intersections. After graphing, you should find the approximate roots, which you can refine using the graph's trace feature or numerical methods. Rounding to the nearest hundredth might give you values such as \( x \approx 3.87 \) and \( x \approx 5.13 \). Make sure to check for any additional roots, possibly even using polynomial division if needed!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad