Pregunta
upstudy study bank question image url

A triangular traffic island has sides \( 21.9,14.3 \), and 13.4 . What are the angles at the comers? The angle across from the side 21.9 is \( 104.4^{\circ} \). (Round to the nearest tenth as needed.) The angle across from the side 14.3 is \( 39.2^{\circ} \). (Round to the nearest tenth as needed.) The angle across from the side 13.4 is \( \square^{\circ} \) (Round to the nearest tenth as needed.)

Ask by George Vargas. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The angle across from the side \( 13.4 \) is \( 36.4^\circ \).

Solución

To find the angle across from the side of length \( 13.4 \) in the given triangular traffic island, we can use the fact that the sum of all angles in a triangle is \( 180^\circ \). Given: - Angle across from side \( 21.9 \) is \( 104.4^\circ \). - Angle across from side \( 14.3 \) is \( 39.2^\circ \). Let's denote the angle across from the side \( 13.4 \) as \( C \). Using the angle sum property: \[ A + B + C = 180^\circ \] \[ 104.4^\circ + 39.2^\circ + C = 180^\circ \] \[ C = 180^\circ - 104.4^\circ - 39.2^\circ \] \[ C = 36.4^\circ \] **Therefore, the angle across from the side \( 13.4 \) is \( 36.4^\circ \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the third angle of the triangular traffic island, we can use the fact that the sum of all angles in a triangle is \(180^\circ\). We already have the angles across from side \(21.9\) as \(104.4^\circ\) and across from side \(14.3\) as \(39.2^\circ\). Now, we can calculate the third angle: \[ \text{Third angle} = 180^\circ - (104.4^\circ + 39.2^\circ) = 180^\circ - 143.6^\circ = 36.4^\circ. \] Thus, the angle across from the side \(13.4\) is \(36.4^\circ\). If you ever find yourself needing to identify angles in triangles but only have the lengths of the sides, you can utilize the Law of Cosines for precise results. This formula helps you find the angles based on the sides of the triangle, eliminating the guesswork and ensuring accuracy. Just remember to round your answers carefully to maintain clarity! For further exploration, consider diving into the world of triangle properties—like those found in Euclidean geometry. You'll discover fascinating relationships like congruence and similarity, which can aid not only in theoretical math but also in practical applications like architecture and engineering. There's so much beauty and utility in triangles, as they form the basic building blocks of many structures!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad