Pregunta
upstudy study bank question image url

In a recent year, the scores for the reading portion of a test were normally distributed, with a mean of 21.2 and a standard deviation of 6.4 . Complete parts (a) through (d) below. (a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 20 . The probability of a student scoring less than 20 is Round to four decimal places as needed.)

Ask by Crawford Collins. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of a student scoring less than 20 is 0.4274.

Solución

To find the probability that a randomly selected high school student scores less than 20 on the reading portion of the test, we can use the properties of the normal distribution. **Given:** - Mean (\(\mu\)) = 21.2 - Standard Deviation (\(\sigma\)) = 6.4 - We need to find \(P(X < 20)\) **Steps:** 1. **Calculate the Z-Score:** The Z-score tells us how many standard deviations a particular score is from the mean. It's calculated using the formula: \[ z = \frac{X - \mu}{\sigma} \] Substituting the given values: \[ z = \frac{20 - 21.2}{6.4} = \frac{-1.2}{6.4} = -0.1875 \] 2. **Find the Probability Corresponding to the Z-Score:** Using standard normal distribution tables or a calculator, we find the probability that \(Z\) is less than \(-0.1875\). \[ P(Z < -0.1875) \approx 0.4274 \] This means there's approximately a 42.74% chance that a randomly selected student scores less than 20. **Answer:** The probability of a student scoring less than 20 is 0.4274.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that a randomly selected high school student scored less than 20 on the reading portion of the test, we first convert the score to a z-score using the formula: \[ z = \frac{(X - \mu)}{\sigma} \] Here, \( X = 20 \), \( \mu = 21.2 \), and \( \sigma = 6.4 \). Calculating the z-score: \[ z = \frac{(20 - 21.2)}{6.4} \approx \frac{-1.2}{6.4} \approx -0.1875 \] Now, we can look up the z-score in the standard normal distribution table or use a calculator to find the corresponding probability. A z-score of -0.1875 gives us a probability of approximately 0.4251. So, the probability that a randomly selected high school student has a score less than 20 is approximately **0.4251** when rounded to four decimal places. Now onto some additional fun facts! Many historical educators believed that standardized testing could predict future success based on performance in school subjects. Interestingly, these tests have evolved significantly over the decades, often leading to heated debates about fairness and accuracy in assessing student capabilities. In real-world applications, understanding how to interpret z-scores can be super helpful! For instance, if you work in education, you can better assess student performance trends and identify those who may need additional support, turning raw test scores into meaningful insights that can shape learning strategies.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad