Id the solution of the system of equations. \[ \begin{array}{r}4 x+3 y=-14 \\ 8 x+10 y=-36\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the system of equations, we can first simplify the second equation. Notice that the second equation can be divided by 2, giving us: \[ 4x + 5y = -18 \] Now we have the system: 1. \( 4x + 3y = -14 \) 2. \( 4x + 5y = -18 \) Next, we can subtract the first equation from the second: \[ (4x + 5y) - (4x + 3y) = -18 - (-14) \] This simplifies to: \[ 2y = -4 \] From which we can solve for \( y \): \[ y = -2 \] Now, substitute \( y = -2 \) back into the first equation to find \( x \): \[ 4x + 3(-2) = -14 \] \[ 4x - 6 = -14 \] \[ 4x = -8 \] \[ x = -2 \] Thus, the solution to the system of equations is: \[ (x, y) = (-2, -2) \]