Pregunta
upstudy study bank question image url

(9) very large numbers, number A and number B , are decomposed into prime n Tollows: number \( \mathrm{A}=2^{1000} \times 3^{100} \times 5^{20} \times 7^{3} \) umber \( \mathrm{B}=2^{2000} \times 3^{50} \times 5^{30} \times 11 \) Write down the HCF of these numbers, as a product of prime factors. Write down the LCM of these numbers, as a product of prime factors. ( LCM

Ask by Davison Ryan. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The HCF of numbers A and B is \( 2^{1000} \times 3^{50} \times 5^{20} \), and the LCM is \( 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11 \).

Solución

To determine the Highest Common Factor (HCF) and the Least Common Multiple (LCM) of the two numbers \( \mathrm{A} \) and \( \mathrm{B} \), we'll analyze their prime factorizations. Given: \[ \mathrm{A} = 2^{1000} \times 3^{100} \times 5^{20} \times 7^{3} \] \[ \mathrm{B} = 2^{2000} \times 3^{50} \times 5^{30} \times 11 \] ### Highest Common Factor (HCF) The HCF is found by taking the lowest power of all common prime factors in both numbers. - **Prime 2:** \( \min(1000, 2000) = 1000 \) - **Prime 3:** \( \min(100, 50) = 50 \) - **Prime 5:** \( \min(20, 30) = 20 \) - **Primes 7 and 11:** Not common to both numbers, so they're excluded. Thus, the HCF is: \[ \text{HCF}(\mathrm{A}, \mathrm{B}) = 2^{1000} \times 3^{50} \times 5^{20} \] ### Least Common Multiple (LCM) The LCM is determined by taking the highest power of all prime factors present in either number. - **Prime 2:** \( \max(1000, 2000) = 2000 \) - **Prime 3:** \( \max(100, 50) = 100 \) - **Prime 5:** \( \max(20, 30) = 30 \) - **Prime 7:** Present only in \( \mathrm{A} \), so its power is \( 3 \). - **Prime 11:** Present only in \( \mathrm{B} \), so its power is \( 1 \). Thus, the LCM is: \[ \text{LCM}(\mathrm{A}, \mathrm{B}) = 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11 \] ### Summary \[ \boxed{ \begin{aligned} \text{HCF}(\mathrm{A}, \mathrm{B}) &= 2^{1000} \times 3^{50} \times 5^{20} \\ \text{LCM}(\mathrm{A}, \mathrm{B}) &= 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11 \end{aligned} } \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the Highest Common Factor (HCF) and the Lowest Common Multiple (LCM) of the two numbers \( A \) and \( B \), we start by analyzing their prime factorizations. For number \( A \): \[ A = 2^{1000} \times 3^{100} \times 5^{20} \times 7^{3} \] For number \( B \): \[ B = 2^{2000} \times 3^{50} \times 5^{30} \times 11^{1} \] **HCF** (Highest Common Factor): To calculate the HCF, we take the lowest power for each common prime factor: - For \( 2 \): min(1000, 2000) = \( 1000 \) - For \( 3 \): min(100, 50) = \( 50 \) - For \( 5 \): min(20, 30) = \( 20 \) - For \( 7 \): (not in \( B \), so we ignore it) - For \( 11 \): (not in \( A \), so we ignore it) Thus, the HCF is: \[ \text{HCF}(A, B) = 2^{1000} \times 3^{50} \times 5^{20} \] **LCM** (Lowest Common Multiple): To calculate the LCM, we take the highest power for each prime factor: - For \( 2 \): max(1000, 2000) = \( 2000 \) - For \( 3 \): max(100, 50) = \( 100 \) - For \( 5 \): max(20, 30) = \( 30 \) - For \( 7 \): (only in \( A \), so we take it) - For \( 11 \): (only in \( B \), so we take it) Thus, the LCM is: \[ \text{LCM}(A, B) = 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11^{1} \] So the solutions are: - HCF: \( 2^{1000} \times 3^{50} \times 5^{20} \) - LCM: \( 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11^{1} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad