Pregunta
Do not use a calculator. Dll variable bases are positive. 1. Determine: a) \( \sqrt[3]{64} \) c) \( \sqrt[3]{-27} \)
Ask by Simpson Simpson. in South Africa
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \sqrt[3]{64} = 4 \) and \( \sqrt[3]{-27} = -3 \).
Solución
Let's solve each part step by step.
### Part a: \( \sqrt[3]{64} \)
To find the cube root of 64, we need to determine which number, when multiplied by itself three times, equals 64.
1. **Identify the number**: We can express 64 as \( 4 \times 4 \times 4 \) or \( 4^3 \).
2. **Cube root calculation**: Therefore, the cube root of 64 is:
\[
\sqrt[3]{64} = 4
\]
### Part c: \( \sqrt[3]{-27} \)
For the cube root of -27, we follow a similar process:
1. **Identify the number**: We can express -27 as \( -3 \times -3 \times -3 \) or \( (-3)^3 \).
2. **Cube root calculation**: Therefore, the cube root of -27 is:
\[
\sqrt[3]{-27} = -3
\]
### Summary of Results
- \( \sqrt[3]{64} = 4 \)
- \( \sqrt[3]{-27} = -3 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
The cube root of 64 is 4, since \(4 \times 4 \times 4 = 64\). So, \( \sqrt[3]{64} = 4 \). For \( \sqrt[3]{-27} \), we're looking for a number that, when multiplied by itself three times, gives -27. That number is -3 because \(-3 \times -3 \times -3 = -27\). Therefore, \( \sqrt[3]{-27} = -3 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium