Pregunta
upstudy study bank question image url

\( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \), if \( \frac{x}{3}-\frac{6}{x}=1 \)

Ask by Hills Grant. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

When \( x = -3 \) or \( x = 6 \), the expression \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \) equals 5.

Solución

Given the equation \( \frac{x}{3}-\frac{6}{x}=1 \), we need to solve for \( x \) first. Let's solve the equation \( \frac{x}{3}-\frac{6}{x}=1 \) for \( x \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{x}{3}-\frac{6}{x}=1\) - step1: Find the domain: \(\frac{x}{3}-\frac{6}{x}=1,x\neq 0\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{x}{3}-\frac{6}{x}\right)\times 3x=1\times 3x\) - step3: Simplify the equation: \(x^{2}-18=3x\) - step4: Move the expression to the left side: \(x^{2}-18-3x=0\) - step5: Factor the expression: \(\left(x-6\right)\left(x+3\right)=0\) - step6: Separate into possible cases: \(\begin{align}&x-6=0\\&x+3=0\end{align}\) - step7: Solve the equation: \(\begin{align}&x=6\\&x=-3\end{align}\) - step8: Check if the solution is in the defined range: \(\begin{align}&x=6\\&x=-3\end{align},x\neq 0\) - step9: Find the intersection: \(\begin{align}&x=6\\&x=-3\end{align}\) - step10: Rewrite: \(x_{1}=-3,x_{2}=6\) The solutions to the equation \( \frac{x}{3}-\frac{6}{x}=1 \) are \( x = -3 \) and \( x = 6 \). Now, we need to substitute these values of \( x \) into the expression \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \) to find the final result. Simplify the expression by following steps: - step0: Solution: \(\frac{x_{9}^{2}}{9}+\frac{36}{x^{2}}\) - step1: Reduce fractions to a common denominator: \(\frac{x_{9}^{2}x^{2}}{9x^{2}}+\frac{36\times 9}{x^{2}\times 9}\) - step2: Reorder the terms: \(\frac{x_{9}^{2}x^{2}}{9x^{2}}+\frac{36\times 9}{9x^{2}}\) - step3: Transform the expression: \(\frac{x_{9}^{2}x^{2}+36\times 9}{9x^{2}}\) - step4: Multiply the numbers: \(\frac{x_{9}^{2}x^{2}+324}{9x^{2}}\) Substitute \( x = -3 \) into the expression \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \): \( \frac{(-3)^{2}}{9}+\frac{36}{(-3)^{2}} = \frac{9}{9}+\frac{36}{9} = 1+4 = 5 \) Substitute \( x = 6 \) into the expression \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \): \( \frac{6^{2}}{9}+\frac{36}{6^{2}} = \frac{36}{9}+\frac{36}{36} = 4+1 = 5 \) Therefore, the final result for both \( x = -3 \) and \( x = 6 \) is 5.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve for \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \) given that \( \frac{x}{3}-\frac{6}{x}=1 \), we start with the equation: \[ \frac{x}{3} - \frac{6}{x} = 1 \] Multiplying through by \( 3x \) to eliminate the fractions, we get: \[ x^2 - 18 = 3x \] Rearranging gives us: \[ x^2 - 3x - 18 = 0 \] Now, we can factor this quadratic equation: \[ (x - 6)(x + 3) = 0 \] Thus, \( x = 6 \) or \( x = -3 \). We'll take \( x = 6 \) since we're focusing on positive values in this context. Now, substituting \( x = 6 \) into our desired expression: \[ \frac{x^2}{9} + \frac{36}{x^2} \] Calculating each part: 1. \( \frac{6^2}{9} = \frac{36}{9} = 4 \) 2. \( \frac{36}{6^2} = \frac{36}{36} = 1 \) Adding these together gives: \[ 4 + 1 = 5 \] Therefore, the final answer is: \[ \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} = 5 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad