Responder
When \( x = -3 \) or \( x = 6 \), the expression \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \) equals 5.
Solución
Given the equation \( \frac{x}{3}-\frac{6}{x}=1 \), we need to solve for \( x \) first.
Let's solve the equation \( \frac{x}{3}-\frac{6}{x}=1 \) for \( x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{x}{3}-\frac{6}{x}=1\)
- step1: Find the domain:
\(\frac{x}{3}-\frac{6}{x}=1,x\neq 0\)
- step2: Multiply both sides of the equation by LCD:
\(\left(\frac{x}{3}-\frac{6}{x}\right)\times 3x=1\times 3x\)
- step3: Simplify the equation:
\(x^{2}-18=3x\)
- step4: Move the expression to the left side:
\(x^{2}-18-3x=0\)
- step5: Factor the expression:
\(\left(x-6\right)\left(x+3\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&x-6=0\\&x+3=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=6\\&x=-3\end{align}\)
- step8: Check if the solution is in the defined range:
\(\begin{align}&x=6\\&x=-3\end{align},x\neq 0\)
- step9: Find the intersection:
\(\begin{align}&x=6\\&x=-3\end{align}\)
- step10: Rewrite:
\(x_{1}=-3,x_{2}=6\)
The solutions to the equation \( \frac{x}{3}-\frac{6}{x}=1 \) are \( x = -3 \) and \( x = 6 \).
Now, we need to substitute these values of \( x \) into the expression \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \) to find the final result.
Simplify the expression by following steps:
- step0: Solution:
\(\frac{x_{9}^{2}}{9}+\frac{36}{x^{2}}\)
- step1: Reduce fractions to a common denominator:
\(\frac{x_{9}^{2}x^{2}}{9x^{2}}+\frac{36\times 9}{x^{2}\times 9}\)
- step2: Reorder the terms:
\(\frac{x_{9}^{2}x^{2}}{9x^{2}}+\frac{36\times 9}{9x^{2}}\)
- step3: Transform the expression:
\(\frac{x_{9}^{2}x^{2}+36\times 9}{9x^{2}}\)
- step4: Multiply the numbers:
\(\frac{x_{9}^{2}x^{2}+324}{9x^{2}}\)
Substitute \( x = -3 \) into the expression \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \):
\( \frac{(-3)^{2}}{9}+\frac{36}{(-3)^{2}} = \frac{9}{9}+\frac{36}{9} = 1+4 = 5 \)
Substitute \( x = 6 \) into the expression \( \frac{x_{9}^{2}}{9}+\frac{36}{x^{2}} \):
\( \frac{6^{2}}{9}+\frac{36}{6^{2}} = \frac{36}{9}+\frac{36}{36} = 4+1 = 5 \)
Therefore, the final result for both \( x = -3 \) and \( x = 6 \) is 5.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución