Factor out the GCF: \( 15x^{3} - 25x^{2} + 10x \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To factor out the greatest common factor (GCF) from the expression \( 15x^{3} - 25x^{2} + 10x \), we first identify the GCF of the coefficients and the variable part. The coefficients are 15, -25, and 10, and the GCF of these numbers is 5. Since each term contains at least one \( x \), the common variable factor is \( x \). Thus, the overall GCF is \( 5x \). Now, we factor \( 5x \) out of each term: \[ 15x^{3} ÷ 5x = 3x^{2} \] \[ -25x^{2} ÷ 5x = -5x \] \[ 10x ÷ 5x = 2 \] Putting this together, we get: \[ 5x(3x^{2} - 5x + 2) \] So, the final factored expression is: \[ 5x(3x^{2} - 5x + 2) \]