Responder
\[
\begin{array}{l}
\frac{14}{9} - \frac{2}{9} = \frac{4}{3} \\
\frac{2}{a - 1} - \frac{5}{a - 1} = -\frac{3}{a - 1} \\
\frac{x + 4}{7} - \frac{x - 5}{7} = \frac{9}{7} \\
\frac{5}{2n} - \frac{2}{n} = \frac{1}{2n} \\
\frac{3x}{2x + 1} - \frac{x}{2x + 1} = \frac{2x}{2x + 1} \\
\frac{x + 2}{x - 4} - \frac{3}{x + 1} = \frac{x^2 + 14}{(x - 4)(x + 1)} \\
\frac{x}{x} = 1 \quad (\text{for } x \neq 0) \\
x^2 - 9 = (x - 3)(x + 3) \\
36 = 36
\end{array}
\]
Solución
Sure! Let's go through each subtraction problem step by step and simplify the answers where possible.
---
1. **\(\frac{14}{9} - \frac{2}{9}\)**
Both fractions have the same denominator, so subtract the numerators directly:
\[
\frac{14}{9} - \frac{2}{9} = \frac{14 - 2}{9} = \frac{12}{9}
\]
Simplify by dividing numerator and denominator by 3:
\[
\frac{12}{9} = \frac{4}{3}
\]
**Answer:** \(\frac{4}{3}\)
---
2. **\(\frac{2}{a - 1} - \frac{5}{a - 1}\)**
Both fractions have the same denominator:
\[
\frac{2}{a - 1} - \frac{5}{a - 1} = \frac{2 - 5}{a - 1} = \frac{-3}{a - 1}
\]
You can also write it as:
\[
-\frac{3}{a - 1}
\]
**Answer:** \(-\frac{3}{a - 1}\)
---
3. **\(\frac{x + 4}{7} - \frac{x - 5}{7}\)**
Same denominator allows direct subtraction:
\[
\frac{x + 4}{7} - \frac{x - 5}{7} = \frac{(x + 4) - (x - 5)}{7} = \frac{x + 4 - x + 5}{7} = \frac{9}{7}
\]
**Answer:** \(\frac{9}{7}\)
---
4. **\(\frac{5}{2n} - \frac{2}{n}\)**
First, find a common denominator, which is \(2n\):
\[
\frac{5}{2n} - \frac{2}{n} = \frac{5}{2n} - \frac{4}{2n} = \frac{5 - 4}{2n} = \frac{1}{2n}
\]
**Answer:** \(\frac{1}{2n}\)
---
5. **\(\frac{3x}{2x + 1} - \frac{x}{2x + 1}\)**
Same denominator allows direct subtraction:
\[
\frac{3x}{2x + 1} - \frac{x}{2x + 1} = \frac{3x - x}{2x + 1} = \frac{2x}{2x + 1}
\]
**Answer:** \(\frac{2x}{2x + 1}\)
---
6. **\(\frac{x + 2}{x - 4} - \frac{3}{x + 1}\)**
Different denominators require finding a common denominator, which is \((x - 4)(x + 1)\):
\[
\frac{x + 2}{x - 4} = \frac{(x + 2)(x + 1)}{(x - 4)(x + 1)} = \frac{x^2 + 3x + 2}{(x - 4)(x + 1)}
\]
\[
\frac{3}{x + 1} = \frac{3(x - 4)}{(x - 4)(x + 1)} = \frac{3x - 12}{(x - 4)(x + 1)}
\]
Subtract the two fractions:
\[
\frac{x^2 + 3x + 2}{(x - 4)(x + 1)} - \frac{3x - 12}{(x - 4)(x + 1)} = \frac{x^2 + 3x + 2 - 3x + 12}{(x - 4)(x + 1)} = \frac{x^2 + 14}{(x - 4)(x + 1)}
\]
**Answer:** \(\frac{x^2 + 14}{(x - 4)(x + 1)}\)
---
7. **\(\frac{x}{x}\)**
Assuming \(x \neq 0\), the expression simplifies to:
\[
\frac{x}{x} = 1
\]
**Answer:** \(1\) (for \(x \neq 0\))
---
8. **Additional Expressions**
It seems there are a couple more expressions mentioned:
- **\(x^2 - 9\):**
\[
x^2 - 9
\]
This is a difference of squares and can be factored as:
\[
(x - 3)(x + 3)
\]
- **36:**
If there's an equation or operation associated with 36, please provide more details for clarification.
---
If you have any more problems or need further clarification on any of these steps, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución