Pregunta
upstudy study bank question image url

Present value (with changing interest rates). Marty has been offered an injury settlement of \( \$ 10,000 \) payable in 3 years. He wants to know what the present value of the injury settlement is if his opportunit) cost is \( 4 \% \). (The opportunity cost is the interest rate in this problem.) What if the opportunity cost is \( 6.5 \% \) ? What if it is \( 10.5 \% \) ? If Marty's opportunity cost is \( 6.5 \% \), what is the present value of the injury settlement? \( \$ 8278.49 \) (Round to the nearest cent.) If Marty's opportunity cost is \( 10.5 \% \), what is the present value of the injury settlement? \( \$ \square \) (Round to the nearest cent.)

Ask by Chavez Harper. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The present value of the injury settlement is: - At a 4% opportunity cost: \$8,889.96 - At a 6.5% opportunity cost: \$8,278.49 - At a 10.5% opportunity cost: \$7,411.62

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To find the present value (PV) of the injury settlement, you can use the formula: \[ PV = \frac{FV}{(1 + r)^n} \] In Marty's case, \( FV \) is \( \$10,000 \), \( r \) is the opportunity cost (interest rate), and \( n \) is the number of years (3 years). For an opportunity cost of \( 10.5\% \) (or \( 0.105 \)), it would look like this: \[ PV = \frac{10000}{(1 + 0.105)^3} \approx \frac{10000}{1.34805} \approx 7407.77 \] So the present value of the injury settlement if Marty's opportunity cost is \( 10.5\% \) is approximately \( \$7407.77 \). Got it? Now, keep in mind that interest rates can fluctuate, so it’s wise for Marty to continually assess his options! Present value calculations are super handy not just for settlements—investing, loan choices, and retirement planning all use similar math! A solid grasp of these concepts can help ensure you're making smart financial decisions across many aspects of life. Next time you consider a future payment, remember to weigh today's worth against future gains!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad