Pregunta
upstudy study bank question image url

\( c b x ^ { 2 } + 24 x - 30 \)

Ask by Stanley Love. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve the quadratic equation \( cbx^{2} + 24x - 30 = 0 \), use the quadratic formula: \[ x = \frac{-24 \pm \sqrt{24^{2} - 4 \cdot cb \cdot (-30)}}{2 \cdot cb} \] Simplify the discriminant: \[ \Delta = 576 + 120cb \] So, the solutions are: \[ x = \frac{-24 \pm \sqrt{576 + 120cb}}{2cb} \] If specific values for \( c \) and \( b \) are given, substitute them to find numerical solutions for \( x \).

Solución

The expression you've provided is a quadratic polynomial in terms of \( x \): \[ cbx^{2} + 24x - 30 \] To **solve for \( x \)**, you can use the **quadratic formula**. The general form of a quadratic equation is: \[ ax^{2} + bx + c = 0 \] Comparing this with your equation: - \( a = cb \) - \( b = 24 \) - \( c = -30 \) The quadratic formula is: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] **Plugging in the values:** \[ x = \frac{-24 \pm \sqrt{24^{2} - 4 \cdot cb \cdot (-30)}}{2 \cdot cb} \] **Simplify the discriminant (\( \Delta \)):** \[ \Delta = 24^{2} - 4 \cdot cb \cdot (-30) = 576 + 120cb \] **So, the solutions for \( x \) are:** \[ x = \frac{-24 \pm \sqrt{576 + 120cb}}{2cb} \] **Further Simplification (Optional):** You can factor out a common factor in the numerator and denominator if desired: \[ x = \frac{-24 \pm \sqrt{576 + 120cb}}{2cb} = \frac{-12 \pm \frac{\sqrt{576 + 120cb}}{2}}{cb} \] However, the expression is already in its simplest form unless specific values for \( c \) and \( b \) are provided. --- **Example:** If you have specific values for \( c \) and \( b \), you can substitute them into the equation to find numerical solutions for \( x \). Here's how you'd do it step-by-step with hypothetical values: 1. **Assume** \( c = 2 \) and \( b = 3 \). 2. **Plug** the values into the discriminant: \[ \Delta = 576 + 120 \cdot 2 \cdot 3 = 576 + 720 = 1296 \] 3. **Take** the square root of the discriminant: \[ \sqrt{1296} = 36 \] 4. **Apply** the quadratic formula: \[ x = \frac{-24 \pm 36}{2 \cdot 2 \cdot 3} = \frac{-24 \pm 36}{12} \] 5. **Find** the two possible solutions: - \( x = \frac{-24 + 36}{12} = \frac{12}{12} = 1 \) - \( x = \frac{-24 - 36}{12} = \frac{-60}{12} = -5 \) **Solutions: \( x = 1 \) and \( x = -5 \)** *Note:* Without specific values for \( c \) and \( b \), the solutions will remain in terms of these variables.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the quadratic equation you've shared can be represented in various forms? Quadratic equations like \( cbx^2 + 24x - 30 \) can reveal a lot about their solutions through the quadratic formula, factoring, or completing the square. Each method can provide insights into the parabola's vertex, axis of symmetry, and roots—how cool is that? Furthermore, in real-world scenarios, such equations often model various phenomena, such as projectile motion, where \( x \) might represent time and \( cb \), 24, and -30 could be coefficients representing velocity and gravitational force. This means that every time you throw a ball, a cyclist calculates their trajectory, or an architect designs a curved roof, they're using similar math in their projects!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad