Responder
To solve the quadratic equation \( cbx^{2} + 24x - 30 = 0 \), use the quadratic formula:
\[
x = \frac{-24 \pm \sqrt{24^{2} - 4 \cdot cb \cdot (-30)}}{2 \cdot cb}
\]
Simplify the discriminant:
\[
\Delta = 576 + 120cb
\]
So, the solutions are:
\[
x = \frac{-24 \pm \sqrt{576 + 120cb}}{2cb}
\]
If specific values for \( c \) and \( b \) are given, substitute them to find numerical solutions for \( x \).
Solución
The expression you've provided is a quadratic polynomial in terms of \( x \):
\[
cbx^{2} + 24x - 30
\]
To **solve for \( x \)**, you can use the **quadratic formula**. The general form of a quadratic equation is:
\[
ax^{2} + bx + c = 0
\]
Comparing this with your equation:
- \( a = cb \)
- \( b = 24 \)
- \( c = -30 \)
The quadratic formula is:
\[
x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}
\]
**Plugging in the values:**
\[
x = \frac{-24 \pm \sqrt{24^{2} - 4 \cdot cb \cdot (-30)}}{2 \cdot cb}
\]
**Simplify the discriminant (\( \Delta \)):**
\[
\Delta = 24^{2} - 4 \cdot cb \cdot (-30) = 576 + 120cb
\]
**So, the solutions for \( x \) are:**
\[
x = \frac{-24 \pm \sqrt{576 + 120cb}}{2cb}
\]
**Further Simplification (Optional):**
You can factor out a common factor in the numerator and denominator if desired:
\[
x = \frac{-24 \pm \sqrt{576 + 120cb}}{2cb} = \frac{-12 \pm \frac{\sqrt{576 + 120cb}}{2}}{cb}
\]
However, the expression is already in its simplest form unless specific values for \( c \) and \( b \) are provided.
---
**Example:**
If you have specific values for \( c \) and \( b \), you can substitute them into the equation to find numerical solutions for \( x \). Here's how you'd do it step-by-step with hypothetical values:
1. **Assume** \( c = 2 \) and \( b = 3 \).
2. **Plug** the values into the discriminant:
\[
\Delta = 576 + 120 \cdot 2 \cdot 3 = 576 + 720 = 1296
\]
3. **Take** the square root of the discriminant:
\[
\sqrt{1296} = 36
\]
4. **Apply** the quadratic formula:
\[
x = \frac{-24 \pm 36}{2 \cdot 2 \cdot 3} = \frac{-24 \pm 36}{12}
\]
5. **Find** the two possible solutions:
- \( x = \frac{-24 + 36}{12} = \frac{12}{12} = 1 \)
- \( x = \frac{-24 - 36}{12} = \frac{-60}{12} = -5 \)
**Solutions: \( x = 1 \) and \( x = -5 \)**
*Note:* Without specific values for \( c \) and \( b \), the solutions will remain in terms of these variables.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución