Pregunta
upstudy study bank question image url

Does the system of equations have no solution, one solution, or infinitely many solutions? \( \begin{array}{l}2 x+y=2 \\ y=-2 x-1\end{array} \) The system has Choose...

Ask by Ramirez Pearson. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system has **no solution**.

Solución

To determine whether the given system of equations has no solution, one solution, or infinitely many solutions, let's analyze and solve the system: \[ \begin{cases} 2x + y = 2 \quad \text{(1)} \\ y = -2x - 1 \quad \text{(2)} \end{cases} \] **Step 1: Substitute Equation (2) into Equation (1)** Since Equation (2) expresses \( y \) in terms of \( x \), we can substitute \( y = -2x - 1 \) into Equation (1): \[ 2x + (-2x - 1) = 2 \] **Simplify the Equation:** \[ 2x - 2x - 1 = 2 \] \[ 0x - 1 = 2 \] \[ -1 = 2 \] **Step 2: Analyze the Result** The equation \( -1 = 2 \) is a contradiction—it's a statement that is never true. This means there's no value of \( x \) and \( y \) that can satisfy both equations simultaneously. **Conclusion:** The system of equations has **no solution**. **Summary:** - **No Solution:** The lines represented by the equations are parallel and never intersect. - **One Solution:** The lines intersect at a single point. - **Infinitely Many Solutions:** The equations represent the same line, so every point on the line is a solution. In this case, since we've arrived at a contradiction, the system has **no solution**. **Answer:** The system has **no solution**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the nature of the solutions for the given system of equations, we can graph the lines represented by each equation. The first equation, \(2x + y = 2\), can be rearranged to \(y = -2x + 2\), which has a slope of -2. The second equation, \(y = -2x - 1\), also has a slope of -2 but intersects the y-axis at -1. Since these two lines have the same slope but different y-intercepts, they are parallel and will never intersect—meaning this system has no solution. If you're ever confused about the relationship between two linear equations, just graph them! If they cross at a point, you've got one solution. If they're the same line, congrats—infinitely many solutions! But if they’re parallel, like here, then you can confidently say there's no solution!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad