Seven students on an intramural team weigh \( 198 \mathrm{lb}, 201 \mathrm{lb}, 193 \mathrm{lb}, 204 \mathrm{lb} \), \( 191 \mathrm{lb}, 210 \mathrm{lb} \) and 182 lb . What is the standard deviation of the weights of these students? The standard deviation is \( \square \). (Round to the nearest tenth.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To calculate the standard deviation of the weights of the seven students, first find the mean (average) weight: 1. Add up all the weights: \[ 198 + 201 + 193 + 204 + 191 + 210 + 182 = 1379 \text{ lb} \] 2. Divide by the number of students: \[ \text{Mean} = \frac{1379}{7} \approx 197 \text{ lb} \] Next, calculate the variance: 3. Find the squared differences from the mean for each weight: \[ (198 - 197)^2 \approx 1, \\ (201 - 197)^2 \approx 16, \\ (193 - 197)^2 \approx 16, \\ (204 - 197)^2 \approx 49, \\ (191 - 197)^2 \approx 36, \\ (210 - 197)^2 \approx 169, \\ (182 - 197)^2 \approx 225 \] 4. Sum these squared differences: \[ 1 + 16 + 16 + 49 + 36 + 169 + 225 = 512 \] 5. Divide by the number of students (7) to get the variance: \[ \text{Variance} = \frac{512}{7} \approx 73.1 \] Finally, take the square root of the variance to get the standard deviation: \[ \text{Standard Deviation} \approx \sqrt{73.1} \approx 8.5 \text{ lb} \] The standard deviation is approximately \( 8.5 \).