Pregunta
upstudy study bank question image url

Formula 1 point You deposit \( \$ 112 \) in an account that pays interest with annual compounding. If the account contains \( \$ 145 \) exactly 9 years from today, what is the annual interest rate? Enter your answer as a decimal, and show 4 decimal places. For example, if your answer is \( 6.5 \% \), you should enter .0650 . Type your answer.

Ask by Stanley Harper. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The annual interest rate is 0.0291.

Solución

To find the annual interest rate, we can use the formula for compound interest: \[ A = P(1 + r)^n \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (initial deposit). - \( r \) is the annual interest rate (in decimal form). - \( n \) is the number of years the money is invested. Given: - \( P = \$112 \) (initial deposit) - \( A = \$145 \) (amount after 9 years) - \( n = 9 \) years We need to solve for \( r \) (annual interest rate). Substitute the given values into the formula: \[ 145 = 112(1 + r)^9 \] Now, we can solve for \( r \) using the formula for compound interest. Solve the equation by following steps: - step0: Solve for \(r\): \(145=112\left(1+r\right)^{9}\) - step1: Swap the sides: \(112\left(1+r\right)^{9}=145\) - step2: Divide both sides: \(\frac{112\left(1+r\right)^{9}}{112}=\frac{145}{112}\) - step3: Divide the numbers: \(\left(1+r\right)^{9}=\frac{145}{112}\) - step4: Simplify the equation: \(\sqrt[9]{\left(1+r\right)^{9}}=\sqrt[9]{\frac{145}{112}}\) - step5: Calculate: \(1+r=\sqrt[9]{\frac{145}{112}}\) - step6: Simplify the root: \(1+r=\frac{\sqrt[9]{145\times 112^{8}}}{112}\) - step7: Move the constant to the right side: \(r=\frac{\sqrt[9]{145\times 112^{8}}}{112}-1\) - step8: Subtract the numbers: \(r=\frac{\sqrt[9]{145\times 112^{8}}-112}{112}\) The annual interest rate \( r \) is approximately 0.0291 or 2.9108%.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the annual interest rate, we can use the formula for compound interest: \[ A = P(1 + r)^t \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit). - \( r \) is the annual interest rate (in decimal). - \( t \) is the number of years the money is invested. In this case: - \( A = 145 \) - \( P = 112 \) - \( t = 9 \) Now plug in the values: \[ 145 = 112(1 + r)^9 \] To isolate \( (1 + r) \), we first divide both sides by 112: \[ \frac{145}{112} = (1 + r)^9 \] Now we calculate \( \frac{145}{112} \): \[ \frac{145}{112} \approx 1.2955 \] Now, taking the 9th root on both sides to solve for \( (1 + r) \): \[ 1 + r = (1.2955)^{\frac{1}{9}} \] Calculating the right-hand side: \[ 1 + r \approx 1.0291 \] Now, subtracting 1 to solve for \( r \): \[ r \approx 0.0291 \] Finally, convert \( r \) into the required format: \[ \text{Annual interest rate} = 0.0291 \] So, the answer is: 0.0291

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad