Pregunta
upstudy study bank question image url

Question Evelyn placed \( \$ 1,500 \) in a savings account which earns \( 5.2 \% \) interest, compounded annually. How much will she have in the account after 12 years? Round your answer to the nearest dollar. Do NOT round until you calculate the final answer.

Ask by Ball Mcdonald. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 12 years, Evelyn will have approximately \$2,756 in her savings account.

Solución

To find out how much Evelyn will have in the account after 12 years, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] where: - \( A \) is the amount of money after \( n \) years, - \( P \) is the principal amount (initial amount of money), - \( r \) is the annual interest rate (in %), - \( n \) is the number of years. Given: - \( P = \$1,500 \), - \( r = 5.2\% \), - \( n = 12 \) years. Substitute the values into the formula: \[ A = 1500 \left( 1 + \frac{5.2}{100} \right)^{12} \] Now, we can calculate the amount of money Evelyn will have in the account after 12 years. Calculate the value by following steps: - step0: Calculate: \(1500\left(1+\frac{5.2}{100}\right)^{12}\) - step1: Divide the terms: \(1500\left(1+\frac{13}{250}\right)^{12}\) - step2: Add the numbers: \(1500\left(\frac{263}{250}\right)^{12}\) - step3: Simplify: \(1500\times \frac{263^{12}}{250^{12}}\) - step4: Rewrite the expression: \(250\times 6\times \frac{263^{12}}{250^{12}}\) - step5: Reduce the numbers: \(6\times \frac{263^{12}}{250^{11}}\) - step6: Rewrite the expression: \(2\times 3\times \frac{263^{12}}{250^{11}}\) - step7: Rewrite the expression: \(2\times 3\times \frac{263^{12}}{2^{11}\times 125^{11}}\) - step8: Reduce the numbers: \(3\times \frac{263^{12}}{2^{10}\times 125^{11}}\) - step9: Multiply the fractions: \(\frac{3\times 263^{12}}{1024\times 125^{11}}\) The amount of money Evelyn will have in the account after 12 years is approximately $2756.01. Rounding this to the nearest dollar, she will have $2756 in the account after 12 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate how much Evelyn will have in her account after 12 years, we use the formula for compound interest: \[ A = P(1 + r)^n \] where: \( A \) = the amount of money accumulated after n years, including interest \( P \) = the principal amount (the initial amount of money) \( r \) = the annual interest rate (decimal) \( n \) = the number of years the money is invested or borrowed Plugging in the values: \( P = 1500 \), \( r = 0.052 \) (which is 5.2% expressed as a decimal), \( n = 12 \). So, \[ A = 1500(1 + 0.052)^{12} \] \[ A = 1500(1.052)^{12} \] \[ A = 1500(1.7137) \] (approximately) \[ A ≈ 2570.55 \] Rounding to the nearest dollar, Evelyn will have approximately \( \$ 2,571 \) after 12 years. Evelyn can enjoy the magic of compounding interest! It’s like planting a money tree that grows with a little care. The longer the money stays in the account, the larger it grows, thanks to the interest being added each year, which in turn earns more interest. This concept is why starting to save early is so powerful—her initial investment has a chance to flourish over time! For anyone looking to grow their savings, the trick is understanding the power of compounding. Don’t forget to regularly review and compare different interest rates and types of accounts available. Plus, be mindful of any fees that might sneak up on you—one of the most common mistakes is not checking the fine print! Finding accounts with lower fees means more of your hard-earned money is working for you!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad