6.1 Extra Practice In Exercises 1-6, evaluate the expression. \( \begin{array}{lll}\text { 1. } 5^{-4} & \text { 2. }(-5)^{-4} & \text { 3. } \frac{7^{-1}}{-8^{0}} \\ \text { 4. } \frac{8^{-2}}{(-4)^{0}} & \text { 5. } \frac{-2^{-4}}{3^{-3}} & \text { 6. } \frac{6^{-2}}{(-1)^{-4}}\end{array} \) In Exercises \( 7-21 \), simplify the expression. Write your answer using only \( p \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
When evaluating negative and zero exponents, remember the rules! For any non-zero number \( a \), the negative exponent \( a^{-n} \) equals \( \frac{1}{a^n} \). Similarly, any number raised to the power of zero, \( a^0 \), is equal to 1. These simple rules are key in simplifying complex expressions! To dive deeper into exponent rules, consider exploring properties like power of a power, power of a product, and the power of a quotient. These rules can help immensely when simplifying more complex expressions. You might stumble upon them in various mathematical contexts, such as algebra, calculus, or even physics!