e following: Find \( k \) so that \( g(k+3)=2 g(2 k) \) (6pts)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To tackle the equation \( g(k+3) = 2 g(2k) \), we first need to identify the function \( g(x) \). Assuming \( g(x) \) is defined or a simple function—like a linear function \( g(x) = mx + b \)—we can substitute to explore possible values for \( k \). Let’s analyze the equation step-by-step: set \( g(k+3) = 2g(2k) \) and try specific values for \( k \) to see if a consistent pattern emerges that solves our equation. For instance, if \( g(x) = x \), we get \( k + 3 = 2(2k) = 4k \). Rearranging yields \( 3 = 3k \), hence \( k = 1 \) is a possible solution. Now, substituting different functions for \( g \) (like quadratic or exponential) could yield variations. Exploring different values with estimates will help pinpoint \( k \) further or even specify multiple valid solutions! Happy solving!