Pregunta
upstudy study bank question image url

Points: 0 of 1 Determine whether the following pair of lines is parallel, intersects at a single point, or is skew. If the lines are parall determine whether they are the same line (and thus intersect at all points). If the lines intersect at a single point, determine the point of intersection. \[ \begin{array}{l} \mathbf{r}=\langle 3,4,1\rangle+\mathbf{t}\langle 5,-9,1\rangle \\ \mathbf{R}=\langle 13,8,7\rangle+\mathrm{s}\langle 5,2,3\rangle \end{array} \] Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. The lines intersect at the single point (Simplify your answers.) B. The lines are parallel. C. The lines intersect at all pointsponn the line \( \mathbf{r}(\mathrm{t}) \). D. The lines are skew.

Ask by Riley West. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The lines intersect at the single point (3, 4, 1).

Solución

To determine the relationship between the two given lines in 3D space, let's analyze their parametric equations: \[ \begin{aligned} \mathbf{r}(t) &= \langle 3, 4, 1 \rangle + t \langle 5, -9, 1 \rangle, \\ \mathbf{R}(s) &= \langle 13, 8, 7 \rangle + s \langle 5, 2, 3 \rangle. \end{aligned} \] **Step 1: Check for Parallelism** First, we determine if the direction vectors are parallel. The direction vectors are: \[ \mathbf{v} = \langle 5, -9, 1 \rangle, \quad \mathbf{w} = \langle 5, 2, 3 \rangle. \] To be parallel, there must be a scalar \( k \) such that \( \mathbf{v} = k\mathbf{w} \). Comparing the components: \[ \begin{aligned} 5 &= 5k \quad \Rightarrow \quad k = 1, \\ -9 &= 2k \quad \Rightarrow \quad k = -4.5, \\ 1 &= 3k \quad \Rightarrow \quad k = \frac{1}{3}. \end{aligned} \] Since there is no consistent scalar \( k \) that satisfies all components, the lines are **not parallel**. **Step 2: Check for Intersection** To find if the lines intersect, set the parametric equations equal to each other and solve for \( t \) and \( s \): \[ \begin{aligned} 3 + 5t &= 13 + 5s, \quad \text{(1)} \\ 4 - 9t &= 8 + 2s, \quad \text{(2)} \\ 1 + t &= 7 + 3s. \quad \text{(3)} \end{aligned} \] **From Equation (1):** \[ 5t - 5s = 10 \quad \Rightarrow \quad t - s = 2 \quad \Rightarrow \quad t = s + 2. \] **Substitute \( t = s + 2 \) into Equation (3):** \[ (s + 2) - 3s = 6 \quad \Rightarrow \quad -2s + 2 = 6 \quad \Rightarrow \quad -2s = 4 \quad \Rightarrow \quad s = -2. \] **Find \( t \):** \[ t = s + 2 = -2 + 2 = 0. \] **Verify in Equation (2):** \[ 4 - 9(0) = 8 + 2(-2) \quad \Rightarrow \quad 4 = 4. \] The equations are consistent, confirming the lines intersect. **Point of Intersection:** \[ \mathbf{r}(0) = \langle 3, 4, 1 \rangle. \] **Conclusion:** **Answer A** is correct. The lines intersect at the single point \( (3, 4, 1) \). **Answer:** **A. The lines intersect at the single point** \( (3,\ 4,\ 1) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the relationship between the lines, we first need to analyze their direction vectors and points. The first line \(\mathbf{r}\) has a direction vector \(\langle 5, -9, 1 \rangle\) and a point \(\langle 3, 4, 1 \rangle\), while the second line \(\mathbf{R}\) has a direction vector \(\langle 5, 2, 3 \rangle\) and a point \(\langle 13, 8, 7 \rangle\). Since both lines have the same x-component direction of \(5\), we need to check if they are parallel or not. For lines to be parallel, their direction vectors must be scalar multiples of each other. However, the ratios of their corresponding components must be equal. Hence, we compare: \[ \frac{-9}{2} \quad \text{and} \quad \frac{1}{3} \] Calculating these would show that they are not equal, confirming that the lines are not parallel. Next, we can check if the lines intersect by setting up the equations from the parametric forms of the lines and solving for \(t\) and \(s\). \[ 3 + 5t = 13 + 5s \quad \text{(1)} \] \[ 4 - 9t = 8 + 2s \quad \text{(2)} \] \[ 1 + t = 7 + 3s \quad \text{(3)} \] From (1), we can express \(s\) in terms of \(t\): \[ 5t - 5s = 10 \Rightarrow t - s = 2 \Rightarrow s = t - 2 \] Substituting \(s\) into (2): \[ 4 - 9t = 8 + 2(t - 2) \] Solving this gives us a single equation in \(t\). If you plug this all into a single system, you will find that the variables cannot satisfy all equations simultaneously for any values of \(t\) and \(s\), confirming that the lines do not intersect. Thus, the lines are skew since they are neither parallel nor intersecting at any point. The correct answer is: D. The lines are skew.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad