03 February 2025 1. Given \( \sqrt{2} ;-3 ; \sqrt{-2} ; \frac{4}{0} ; \frac{0}{6} ; 7 ; \sqrt{9} ; \sqrt[3]{9} ; \sqrt[3]{-27} \) From the list of the numbors above, give a) All the non-real numbers D) All the integers c) All the rational d) Al the irrational numbers e) All the natural numbers. numbers 2. Simplify the following expressions: a) \( 2 a b^{2}(4 a-3 c+7 b c) \) b) \( (2 a-3 b)\left(4 a^{2}+6 a b+9 b^{2}\right) \) c) \( (8 x y-7 z)(9 x y+3 x-5 z) \) d) \( (f-15 g)(6 f-4 f g-3 g) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
From the list of numbers given, let's break them down! 1. a) The non-real numbers are \( \sqrt{-2} \) and \( \frac{4}{0} \) (since division by zero is undefined). b) The integers are \( -3, 0, 7, \sqrt{9} \) (which is 3). c) The rational numbers are \( -3, \frac{0}{6} \) (which is 0), \( 7, \sqrt{9} \) (which is 3), and \( \frac{4}{0} \) (undefined, so not included). d) The irrational numbers are \( \sqrt{2} \) and \( \sqrt{2} \). e) The natural numbers are \( 7 \) and \( \sqrt{9} \) (which is 3). 2. Let's simplify the expressions: a) \( 2ab^2(4a-3c+7bc) = 8a^2b^2 - 6abc + 14ab^3 \). b) Expand using the distributive property: \( (2a - 3b)(4a^2 + 6ab + 9b^2) = 8a^3 + 12a^2b + 18ab^2 - 12a^2b - 18ab^2 - 27b^3 = 8a^3 - 27b^3 \). c) Expand: \( (8xy - 7z)(9xy + 3x - 5z) = 72x^2y^2 + 24xy - 40xyz - 63zxy - 21z^2 + 35z^2 = 72x^2y^2 - (63xyz + 40xyz) + (35z - 21z^2) \). d) Expand using distributive property: \( (f - 15g)(6f - 4fg - 3g) = 6f^2 - 4fg - 3g - 90fg + 60g^2 + 45fg = 6f^2 - (4fg + 90fg) + 60g^2 + 45fg \). Hope this helps! Let me know if you need me to clarify anything!