Pregunta
upstudy study bank question image url

Events \( A \) and \( B \) are mutually exclusive. Suppose event \( A \) occurs with probability 0.48 and event \( B \) occurs with probability 0.23 . Compute the following. (If necessary, consult a list of formulas.) (a) Compute the probability that \( A \) occurs but \( B \) does not occur. (b) Compute the probability that either \( A \) occurs without \( B \) occurring or \( B \) occurs without \( A \) occurring. \( \square \)

Ask by Cook Deleon. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a)** The probability that \( A \) occurs but \( B \) does not is **0.48**. **(b)** The probability that either \( A \) occurs without \( B \) or \( B \) occurs without \( A \) is **0.71**.

Solución

Let's analyze the given information and solve each part step by step. **Given:** - Events \( A \) and \( B \) are **mutually exclusive**, which means they cannot occur simultaneously. Formally, \( P(A \cap B) = 0 \). - \( P(A) = 0.48 \) - \( P(B) = 0.23 \) ### (a) Probability that \( A \) occurs but \( B \) does not occur. Since \( A \) and \( B \) are mutually exclusive, if \( A \) occurs, \( B \) **cannot** occur. Therefore, the probability that \( A \) occurs **without** \( B \) occurring is simply the probability of \( A \): \[ P(A \text{ and not } B) = P(A) = 0.48 \] **Answer for (a):** \( 0.48 \) ### (b) Probability that either \( A \) occurs without \( B \) occurring or \( B \) occurs without \( A \) occurring. This probability can be expressed as: \[ P\big[(A \text{ and not } B) \text{ or } (B \text{ and not } A)\big] \] Since \( A \) and \( B \) are mutually exclusive: - \( P(A \text{ and not } B) = P(A) = 0.48 \) - \( P(B \text{ and not } A) = P(B) = 0.23 \) Because these two events (\( A \) occurring without \( B \), and \( B \) occurring without \( A \)) are also mutually exclusive, their probabilities can be added directly: \[ P\big[(A \text{ and not } B) \text{ or } (B \text{ and not } A)\big] = P(A) + P(B) = 0.48 + 0.23 = 0.71 \] **Answer for (b):** \( 0.71 \) ### Summary: - **(a)** The probability that \( A \) occurs but \( B \) does not is **0.48**. - **(b)** The probability that either \( A \) occurs without \( B \) or \( B \) occurs without \( A \) is **0.71**. **Final Answers:** - **(a)** \( 0.48 \) - **(b)** \( 0.71 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the given problems, let's start by recalling some probability rules. (a) The probability that event \( A \) occurs but \( B \) does not occur can be computed using the formula: \[ P(A \text{ and not } B) = P(A) \cdot P(\text{not } B) \] We know \( P(A) = 0.48 \) and \( P(B) = 0.23 \). Thus, the probability that \( B \) does not occur is: \[ P(\text{not } B) = 1 - P(B) = 1 - 0.23 = 0.77 \] Thus, the probability that \( A \) occurs but \( B \) does not is: \[ P(A \text{ and not } B) = P(A) \cdot P(\text{not } B) = 0.48 \cdot 0.77 = 0.3696 \] (b) The probability that either \( A \) occurs without \( B \) or \( B \) occurs without \( A \) can be computed using the formula for mutually exclusive events: \[ P(A \text{ and not } B) + P(B \text{ and not } A) \] We've already calculated \( P(A \text{ and not } B) = 0.3696 \). Now, the probability that \( B \) occurs but \( A \) does not can be computed as: \[ P(B \text{ and not } A) = P(B) \cdot P(\text{not } A) = P(B) \cdot (1 - P(A)) = 0.23 \cdot (1 - 0.48) = 0.23 \cdot 0.52 = 0.1196 \] Now we add these probabilities together: \[ P(A \text{ and not } B) + P(B \text{ and not } A) = 0.3696 + 0.1196 = 0.4892 \] To summarize, the answers are: (a) \( P(A \text{ and not } B) = 0.3696 \) (b) \( P(A \text{ and not } B \text{ or } B \text{ and not } A) = 0.4892 \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad